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Introduction
External ballistics1 deals with the behavior of a 
non-powered projectile in flight. Several forces 
act upon the projectile during this phase including 
gravity and air resistance. 

Various authors have extended the projectile model 
for lateral force impulses,2 as well as aerodynamic 
jump extending analysis due to lateral impulses3 
and aerodynamic asymmetry,4 instability of 
controlled projectiles in ascending or descending 
flight.5 Costello’s modified linear theory6 has also 
been applied recently for rapid trajectory projectile 
prediction.

The present work proposes several modifications 
to the full six degrees of freedom (6-DOF) theory 
that significantly improve the accuracy of impact 
point prediction of short and long range trajectories 
with variable aerodynamic coefficients of spin-
stabilized bullets.  For the purposes of the analysis, 
linear interpolation has been applied from the 
tabulated database of McCoy’s text.1

Projectile model
The present analysis considers a 0.30 caliber 

(0.308 inch diameter), 168 grain (~10.9 g) Sierra 
International bullet used by National Match 
M14 rifle and loaded into 7.62 mm M852 match 
ammunition for high power rifle competition 
shooting, as shown in Figure 1. This bullet is not 
for combat use. The basic physical and geometrical 
characteristic data of the above mentioned 7.62 mm 
bullet are illustrated briefly in Table 1.

Trajectory flight simulation model
A six degrees of freedom rigid-projectile model7–

10 has been employed in order to predict the “free” 
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Figure 1. 7.62 mm match ammunition with a 
diameter of 0.30 caliber: representative small 
bullet types.
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nominal atmospheric trajectory to final target area 
without any control practice runs. The six degrees 
of freedom in the flight analysis comprise the three 
translation components (x, y, z) describing the 
position of the projectile’s center of mass and three 
Euler angles (φ, θ, ψ) describing the orientation of 
the projectile body as shown in Figure 2.Two main 
coordinate systems are used for the computational 
approach of the atmospheric flight motion. The 
one is a plane fixed (inertial frame, IF) at the firing 
site. The other is a no-roll rotating coordinate 
system on the projectile body (no-roll-frame, 
NRF, φ = 0) with the XNRF axis along the projectile 
axis of symmetry and YNRF, ZNRF axes oriented so 
as to complete a right hand orthogonal system. If 
the independent variable is changed from time t 
to dimensionless arc length l measured in calibers 
of travel:
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Equations (2)–(13) are the 6-DOF atmospheric 
equations of motion expressed in the no-roll 
frame.

The aerodynamic coefficients CD, CLa, CMPA, CMQ, 
CMA used in this model are projectile-specific 
functions of the Mach number and total angle of 
attack variations. 

The projectile dynamics trajectory model consists 
of twelve non-linear first order ordinary differential 
equations, which are solved simultaneously by 
resorting to numerical integration using a 4th 
order Runge–Kutta method and with regard to the 
6-D nominal atmospheric motion.

Modified trajectory model
Modified linear theory10,15 makes several 
assumptions regarding the relative size of different 
quantities to further simplify the analysis: the 
Euler angle ψ is small so sin ψ ≈ ψ, cos ψ ≈ 1. The 
axial velocity ũNRF is replaced by the total velocity  
VT because the side velocities v NRF and w NRF are 
small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the 
atmospheric trajectory.

The projectile is mass-balanced such that IXY = IYZ 
= IXZ = 0, IYY = IZZ. Quantities VT and φ are large 
compared to ψ, NRFq , NRFr , NRFv  and NRFw , such 
that products of small quantities and their 
derivatives are negligible. In projectile linear 
theory, the Magnus forces in equations (9) and 
(10) are typically regarded as small and dropped. 
Magnus moments are due to the fact that a cross 

Figure 2.  No-roll (moving) and earth-fixed 
(inertial) coordinate systems for the projectile 
trajectory analysis.

Table 1. Physical and geometrical data of 7.62 mm bullet type.

Characteristics 7.62 mm M852 bullet

Reference diameter/mm 7.62
Total length/mm 71.88
Total mass/kg 0.385
Axial moment of inertia/kg m2 7.2282 × 10-8

Transverse moment of inertia/kg m2 5.3787 × 10-7

Center of gravity from the base/mm 12.03
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product between the Magnus force and its 
respective moment arm is not necessarily small. 
With the aforementioned assumptions, the above 
expressions results in equations (2i)–(13i):

The equations 5, 6, 7 and 11 remain invariable. 

The modified linear trajectory model runs at faster 
time with variable aerodynamic coefficients than 
the corresponding full 6-DOF analysis. On the 
other hand 6-DOF gives results of high accuracy 
trajectory prediction.

Figure 3. Flight paths of 7.62 mm bullet at pitch angles of 1, 7 and 15 degrees for 6-DOF and modified 
linear models.
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Atmospheric model
Atmospheric properties of air, like density ρ, are 
being calculated based on a standard atmosphere 
from the International Civil Aviation Organization 
(ICAO). 

Computational simulation
The flight dynamic model of a 7.62  mm bullet 
involves the solution of the set of twelve first 
order ordinary differentials for two trajectories 
with variable aerodynamic coefficients, first 
the full 6-DOF and second with simplifications 
for the modified trajectory, Equations  (2)–(13), 
which are solved simultaneously by resorting to 
numerical integration using a 4th order Runge–
Kutta method. The six-degrees-of-freedom and the 
modified linear model numerical trajectories were 
computed by using a time step size of 10 × 10−3 s.  
Initial flight conditions for both dynamic flight 
simulation models are illustrated in Table 2 for the 
test cases examined.

Results and Discussion
The flight path of 6-DOF trajectory motion1 
with variable11 and no constant12 aerodynamic 
coefficients of the 7.62 mm projectile with initial 
firing velocity of 792.48  m  s−1, rifling twist rate 
1  turn in 12  inches (30  cm), at 1°, 7° and 15°, 
are indicated in Figure  3. The calculated impact 
points of the above no-wind trajectories with the 
proposed variable aerodynamic coefficients are 
compared with accurate estimations of modified 
linear trajectory analysis and provide quite good 
prediction of the entirety of the atmospheric flight 

motion for the same initial flight conditions. 

Figure  4 shows the crossrange flight path of a 
7.62  mm bullet downrange distance for both 
methods with no big differences in low launch 
angle but differences in high angles. At 1, 7 and 
15 degrees pitch angle for 6-DOF we have values 
of the crossrange as 3.94 cm, 7.2 m and 24.3 m, 
respectively. For the same initial conditions the 
modified theory has the values 3.9 cm, 6.9 m, and 
22 m, respectively.  

Figure  5 shows that the velocity versus range 
diagrams of the two methods, at initial pitch 
angles of 1, 7 and 15 degrees, have no differences. 
Figure 6 also shows that the trajectory analysis for 
the three roll rates is the same for the 7.62  mm 

Table 2. Initial flight parameters of the bullet test 
case examined.

Initial flight data 7.62 mm M852  bullet

x/m 0.0
y/m 0.0
z/m 0.0
φ/deg 0.0
θ/deg 1, 7 and 15
ψ/deg 0.0
u/m s−1 792.48
v/m s−1 0.0
w/m s−1 0.0
p/rad s−1 16 343.0
q/rad s−1 0.0
r/rad s−1 0.0
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Figure 5. Velocity versus range of 7.62 mm bullet for low and high pitch angles in the two trajectory 
models.

Figure 4. Crossrange versus downrange distance of 7.62 mm bullet for modified linear and 6-DOF 
models



Page 36� Journal of Pyrotechnics, Issue 27, 2008

bullet with variable aerodynamic coefficients.

Conclusion
The modified linear trajectory model was shown 
to provide reasonable impact predictions at short 
and long-range trajectories of high and low spin-
stabilized bullets. Moreover, the modified model 
showed some differences at high pitch angles. 
However, the comparison between the 6-DOF and 
the modified trajectory model provided quite good 
results with the variable aerodynamic coefficients 
over the whole flight path. The computational 
results of the proposed synthesized analysis are 
in good agreement compared with other technical 
data and recognized exterior atmospheric projectile 
flight computational models. 
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Nomenclature

CD
drag force aerodynamic 
coefficient

CLP
lift force aerodynamic 
coefficient

CLa
roll damping moment 
aerodynamic coefficient

CMQ
pitch damping moment 
aerodynamic coefficient

CMA
overturning moment 
aerodynamic coefficient

CMPA
Magnus moment aerodynamic 
coefficient

if if if, ,x y z projectile position coordinates 
in the inertial frame/m

m projectile mass/kg
D projectile reference diameter/m
s dimensionless arc length

VT
total aerodynamic 
velocity/m s−1

NRF NRF NRF, ,u v w
projectile velocity components 
expressed in the no-roll-
frame/m s−1

w w w, ,u v w wind velocity components in 
no-roll-body-frame/m s−1

NRF NRF, NRF,p q r
projectile roll, pitch and yaw 
rates in the moving frame, 
respectively/rad s−1

ρ density of air/kg m−3

φ , θ, ψ projectile roll, pitch and yaw 
angles, respectively/deg

α, β aerodynamic angles of attack 
and sideslip

g gravity acceleration/m s−2

I projectile inertia matrix

IXX
projectile axial moment of 
inertia/kg m−2

IYY

projectile transverse moment of 
inertia about y-axis through the 
center of mass/kg m2

ΙΧΧ, ΙΥΥ, ΙΖΖ
diagonal components of the 
inertia matrix

ΙΧΥ, ΙΥΖ, ΙΧΖ
off-diagonal components of the 
inertia  matrix

LCGCM

distance from the center of 
mass (CG) to the Magnus 
center of pressure (CM) along 
the station line/m

LCGCP

distance from the center of 
mass (CG) to the aerodynamic 
center of pressure (CP) along 
the station line/m

L1, L2

dimensional coefficients, 
πρD3/8m and πρD3/16ΙΥΥ, 
respectively


