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ABSTRACT 

A brief description of compressible fluid flow 
is presented to clarify and, hopefully, reduce the 
incorrect usage of the term “choked flow” in the 
fireworks community. 
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A term that is frequently used in the field of 
fluid mechanics is “choked flow”. Unfortunately, 
it is also a frequently misused term. The author 
has found that this seems to be particularly true 
in the fireworks industry where it has been used 
as an explanation for, among other things, the 
transition between the initial slow buildup of 
pressure in fireworks mortars and a sudden and 
rapid increase in mortar pressure. (Choked flow 
has also been similarly invoked as one explana-
tion of exploding gerbs.) This article is a brief 
explanation of those conditions under which the 
use of the term choked flow would be correct, 
and why and under what conditions, especially 
in fireworks, its use is incorrect. 

Figure 1 presents two examples of gas flow 
from some pressure source region labeled P0 and 
having a pressure of P0 through a constricted 
throat section similarly labeled P1 (at pressure P1) 
to the atmosphere labeled P2 (at ambient pressure 
P2). The upper depiction in Figure 1 is typical of 
either a rocket motor or gerb, and the lower de-
piction shows the somewhat analogous situation 
of a spherical shell firing from a mortar. If the 
pressures P0 and P2 are equal, there will be no flow 
of gas. If the pressure P0  is raised above P2, the 
gas will begin to flow with some velocity, with 
the point of maximum constriction at P1 being of 
particular interest. If P0 is increased further, the 
velocity of the flow at point P1 again increases. 
However, if the pressure P0 continues to be in-
creased, at some point the velocity of the gas flow 
at point P1 will reach the speed of sound (which 
for a given gas is mostly a function of tempera-

ture). At that point, any further increase in P0 will 
not result in a further increase in gas flow velocity 
at point P1. This is the condition generally de-
scribed as “choked flow”. 
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Figure 1.  Examples of gas flow in items such  
as a rocket motor or gerb (above) and a  
discharging fireworks mortar (below). 
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Figure 2 is a somewhat typical graph of mor-
tar pressure as a function of time during the fir-
ing of an aerial shell. Note that there is a rather 
long interval between igniting the lift charge 
with an electric match (at t0) and the eventual 
rapid rise in mortar pressure (occurring from tr 
to tp). It has occasionally been suggested that the 
reason for the sudden onset and rapid increase in 
pressure was that the velocity of the gas escap-
ing around the aerial shell has reached the speed 
of sound. Since there can be no further increases 
in the velocity of the escaping lift gas as mortar 
pressure continues to increase, it is suggested 
that this results in something like a piling up of 
gas that is unable to escape, and this is what 
causes the precipitous rise in mortar pressure. 
However, as is demonstrated below, an exami-
nation of gas flow dynamics finds that this ar-
gument cannot be supported. 
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Figure 2.  A graph of mortar pressure (gauge 
pressure) as a function of time during the firing 
of an aerial shell. 

Before beginning the discussion of gas dy-
namics in general, and choked flow in particular, 
it is appropriate to point out that the information 
presented in this article can be found in any 
number of text books. For this reason, specific 
references are not included, but rather a list of 
general references is provided at the conclusion 
of the article. 

The first step in discussing choked flow is to 
demonstrate that under the conditions assumed 
for this article, the density of a gas is proportional 
to its pressure. Equation 1 is known as the Ideal 

Gas Law and is a reasonably accurate equation 
of state for most commonly encountered gases 
under the conditions of pressure and temperature 
encountered in fireworks and rocketry. 

nRTPV =  (1) 

where P is absolute pressure (as opposed to 
gauge pressure, or pressure above atmospheric), 
V is volume, n is the number of moles of gas, R 
is a constant of proportionality (the Universal 
Gas Constant, the magnitude of which depends 
on the system of units being used), and T is the 
absolute temperature.  

In this discussion, only pressure sources vent-
ing to the ambient atmosphere will be considered, 
and the temperature (T) at the pressure source will 
be considered to be constant. Therefore, eq 1 re-
duces to 

      nPV n or P
V

∝ ∝  (2) 

(Equation 2 is also known as Boyles Law.) Since 
density (ρ) is defined as mass divided by vol-
ume, and number of moles of a gas is propor-
tional to the mass of that gas (m), then   

m n
V V

ρ = ∝  (3) 

For eqs 2 and 3 both to be true, for an ideal gas 
its density must be directly proportional to the 
pressure, (ρ P∝ ) (i.e., gas density increases line-
arly with gas pressure). 

The second step in this discussion is to derive 
a general equation for the mass flow rate for a 
gas in motion. Consider a gas flowing through a 
pipe, such as illustrated in Figure 3, with a known 
constant velocity (v). During a given time inter-
val (t), not considering the random motions of 
the individual gas molecules, the gas starting at 
point 1 will have traveled to point 2. In this case, 
the distance traveled (D) will equal gas velocity 
times time. 

D v t= ⋅  (4) 

During that same time interval, the volume of the 
gas (V) passing point 1 will be that amount of gas 
in the volume of the pipe between points 1 and 2, 
which is equal to the cross sectional area of the 
pipe (A) times the distance between points 1 and 
2 (D). 
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V A D A v t= ⋅ = ⋅ ⋅  (5) 

Since density is defined as equaling mass (m) 
divided by volume (V), the mass of gas passing 
point 1 during this same time interval is equal to 
the density of the gas times its volume. 

m V A v t= ρ ⋅ = ρ ⋅ ⋅ ⋅  (6) 

Mass flow rate ( m ) is defined as the mass pass-
ing point 1 divided by the time that has elapsed. 

m A v= ρ ⋅ ⋅  (7) 

Gas Flow

1 2  
Figure 3.  An illustration of a gas flowing 
through a simple pipe. 

In the discussion of choked flow, it is the 
mass flow rate ( m ) through the point of con-
striction that will be of primary interest. Also, 
when the terms “sub-sonic”, “sonic”, and “su-
per-sonic” flow are used, they refer to the local 
speed of sound in the gas at the section being 
referred to (i.e., in sections P0, P1, or P2). They 
do not refer to the speed of sound in the sur-
rounding atmosphere. Finally, it should be noted 
that the local speed of sound is, for a given fluid 
(gas), primarily, but not exclusively, dependent 
on the temperature of the fluid. In the cases be-
ing discussed here, the actual value for the local 
speed of sound will not be specified, and it will 
be assumed to be a constant through out the de-
vice, as will the temperature and the chemical 
and molecular composition of the gas. 

The basic equation for sub-sonic mass flow 
rate (eq 8) has been taken from standard refer-
ence texts and is presented here without deriva-
tion (for more information, see the list of refer-
ences at the end of this article).  
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 (8) 

In eq 8, P0 is the chamber pressure in section 
P0, P2 is the ambient pressure in section P2, A is 

the cross sectional area of section P1, ρ is the 
density of the gas, and k is the ratio of the spe-
cific heat at constant pressure divided by the 
specific heat at constant volume (i.e., k = Cp /Cv) 
for the gas in the system. For common atmos-
pheric gases, k is approximately 1.4. 

Assume for the purposes of discussion that 
density is constant (and not proportional to pres-
sure as was shown above). Then, if k is assumed 
to be 1.4, the pressure in section P2 is held con-
stant at atmospheric pressure and the pressure in 
section P0 is increased from atmospheric to that 
which produces sonic flow in section P1, eq 8 
can be used to calculate mass flow rate. In this 
case, Figure 4 is a graph of the resulting mass 
flow rate, normalized to that when P0 is 1.89 
atmospheres. 
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Figure 4.  A graph of normalized sub-sonic mass 
flow rate as a function of absolute chamber 
pressure, incorrectly assuming gas density is 
constant, independent of pressure. 

This type of curve can give rise to the term 
“choked flow”, as it appears that no matter how 
high the pressure rises, the mass flow rate 
reaches a limit. (This is actually the case when 
the pressure, in the source chamber, P0 is held 
constant and the exhaust pressure P2 is reduced, 
such as would happen if a rocket were to travel 
into space.). However, recall that the graph in 
Figure 4 was based on the incorrect assumption 
that gas density in section P2 was constant and 
not proportional to pressure (P2). 
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Therefore, a term needs to be introduced in 
the first radical that will cause the density of the 
gas to be proportional to the pressure above am-
bient. Notice in eq 9, that when the pressure P0 is 
the same as the ambient pressure, P2, the term is 
equal to 1, and if the source pressure is twice am-
bient, the term is equal to 2, and so forth. (In eq 9, 
ρ2 is the density of the gas at atmospheric pres-
sure, P2.) 
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 (9) 

Equation 9, when plotted similarly to eq 8, results 
in the graph in Figure 5. 
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Figure 5.  A graph of normalized sub-sonic mass 
flow rate as a function of absolute chamber 
pressure, correctly considering gas density to 
be proportional to pressure. 

Equation 9 holds true so long as the flow re-
mains sub-sonic (i.e., until the ‘critical’ pressure 
is reached). This critical pressure is defined as 
when the ratio of the pressure P0 divided by P2 
exceeds the number given by  

1

2
1 −
⎟
⎠
⎞

⎜
⎝
⎛ + k

k

k
 (10) 

At this critical pressure, the velocity in the ‘throat’ 
section P1, is at sonic velocity, and for all higher 

source pressures (P0) the following equation gov-
erns: 
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 (11) 

And, similarly to eq 9, a term is added to ac-
count for gas density in the chamber region be-
ing proportional to chamber pressure, giving 
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 (12) 

A plot of eq 12 results in the graph shown in 
Figure 6. 
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Figure 6.  A graph of normalized super-sonic 
mass flow rate as a function of absolute  
chamber pressure. 

Combining the sub-sonic and super-sonic data 
results in the graph shown in Figure 7. 
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Figure 7.  A graph of normalized mass flow rate 
as a function of absolute chamber pressure, 
spanning both sub- and super-sonic flow  
regions. 

In the cases presented above, the transition 
from sub-sonic to supersonic flow happens at (i.e., 
the critical pressure is) approximately 27.8 psia. 
The above curves are generic; the exact shapes 
of the mass flow curves depend on other factors 
such as the composition of the gas, gas tempera-
ture, and such. 

As can be seen from Figure 7, while there is 
a decrease in the slope of the mass flow curve 
with increasing pressure—until the flow reaches 

sonic velocity—clearly the mass flow rate con-
tinues to smoothly increase even after the flow 
has reached sonic velocity in the throat section. 
Accordingly, there is no basis for invoking a 
theory of choked flow as the reason for the pre-
cipitous rise in mortar pressure during the course 
of firing aerial shells.  

The author used the following references, but 
a quick perusal of technical library shelves will 
show this list is far from exhaustive. 
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