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ABSTRACT 

This brief article examines some aspects of 
noise and the effects of filters applied to data. 
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Introduction 

Filtering as used herein, is the removal of 
noise from the signal under examination  

Noise, as defined herein, is any portion of a 
measured signal that is not desired. The noise 
may result from fluctuations in the event, from 
mechanical sources that are not being meas-
ured, from inherent electronic sources, from 
unwanted electromagnetic interactions with the 
electronics or wiring, or just something that is 
interfering with what the investigator thinks the 
signal should look like. (However, as someone 
famous once said—No data is completely use-
less, it just isn’t quite what you had in mind 
before you took it.) 

Background 

The fundamental process of data acquisition, 
reduction, and analysis is as follows: 

• A physical event occurs. 
• A transducer changes some physical mani-

festation of the event into a form that may 
be recorded. 

• A record is made. 
• The record is examined and useful infor-

mation is obtained. 

In an ideal world, one would be able to di-
rectly record every physical manifestation of 
any event with perfect fidelity, assign correct 
values, and obtain all the information that is 
desired. In the real world, however, things are a 
bit different. 

There Are Two Significantly Different Ways 
of Filtering: Analog and Digital 

Analog filtering removes some frequency(s) 
portion of the signal by means of passive, ac-
tive, or both passive and active electronic com-
ponents. A very common analog filter is the 
“crossover” used in multi-driver speaker sys-
tems. In this application various bands of fre-
quencies are either blocked, or passed, to the 
speakers, because some speakers are better at 
reproducing low, mid range, or high frequen-
cies. Since the speakers are transducers (electri-
cal energy to sound energy) and since the filters 
are (usually) comprised of capacitors, inductors, 
and resistors, one can readily see how the proc-
ess would work in reverse. 

Imagine that there are two sound-energy to 
electrical-energy transducers (microphones) with 
one having good linear response at low frequency 
and the other, good linear response at high fre-
quency. If a sound, comprising both high and 
low frequencies excites these transducers, one 
will produce an electrical signal that is a good 
representation of the low frequency component 
of the sound, but with a superimposed poor rep-
resentation of the high frequency component, 
and vice versa. The filter, in this case would 
serve to block the high frequency electrical sig-
nal produced by the transducer having good 
low frequency response, and vice versa. 

However, in modern digital data acquisition, 
the main use for an analog filter is solely to 
block frequencies that are above the Nyquist 
Limit. The Nyquist Limit is that data acquisi-
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tion rate which will allow at least two data 
points per Hz. [a] (A signal having a maximum 
frequency component of 50 KHz must be digi-
tized at a rate of at least 100,000 samples per 
second, a 25 KHz signal must be digitized at a 
rate of at least 50,000 samples per second, and 
so forth), although a higher digitizing rate is 
desirable. If this is not done, an effect called 
aliasing[b] may/will occur. This causes the ap-
pearance of spurious data and must be taken 
into account. 

Frequently, either the transducer or the asso-
ciated electronics will take care of this problem. 
If a transducer, or its signal conditioner, only 
has a frequency response of 10 KHz one need 
never digitize the data from that transducer at 
(much) over 20,000 data points per second. One 
must also be aware of frequency response non-
linearity in transducers as areas of potential 
problems. As an example, some transducers may 
have a stated frequency response of 100 KHz, 
but a resonance at 200 KHz. In this case, one 
would have to make sure that no frequency over 
100 KHz was digitized. 

It is very desirable to not introduce any ad-
ditional analog filtering before digitizing the 
signal of interest. While it may be nice to show 
a “clean” waveform on an oscilloscope, once 
analog filtering has been performed, it is not 
possible to recover any information, or frequen-
cies, that might have been present in the signal 
but have been removed by the analog filtering. 

The investigator will frequently discover 
that upon re-examining data that an “interest-
ing” shape in a curve is noticed. If the data, 
showing the event of interest, has only been 
digitally filtered, the data may be re-presented 
with either no, or different, filtering applied in 
an effort to emphasize/clarify the “interesting” 
event. However, if the data had been analog 
filtered prior to digitizing, no frequency that 
had been filtered may be recovered. 

Conceptually, all filtering may be viewed as 
a series of steps. These steps, in their most fun-
damental form, are the following: 

• transformation of the time domain data to 
frequency domain data 

• reduction of unwanted frequency data 

• transformation of the altered data back to 
the time domain 

The simplest, probably best-known, and most 
intuitive, low pass filters are the basic “square” 
smoothing methods. Consider the following ex-
ample given in the Qbasic[c] computer language: 
 Dim Arr1(1000)  ' create two arrays, 

capable of holding 
1000 data 

  Dim Arr2(1000) 'points each 
 For I = 1 to 1000 
  Arr1(I) = Data(I)  'fill the first array with 

the raw data 
 Next I 
 For I = 2 to 999 ' this is where the 

smoothing takes 
place 

  Avg = 0 
  For J = -1 to 1 
   Avg = Avg + Arr1(I+J) 
  Next J 
  Arr2(I) = Avg/3 
 Next I 
 

This bit of code performs a three-point aver-
age smoothing on the data contained in Arr1, 
and places the smoothed data in Arr2. One 
might wish to note that the data contained in 
Arr2(1) and Arr2(1000) has the value of zero. It 
is obvious that any odd number of data may be 
smoothed using the above code with minor 
modifications, and even numbers with only a 
bit more of a change.  

From this simple “square” smoothing, one 
may extend to a more complex method in which 
the data points are weighted. For example: 
 Dim Arr1(1000)  ' create two arrays, 

capable of holding  
 Dim Arr2(1000) '1000 data points each 
 Dim H(-2 to 2) 'this array will hold 5 

filtering coefficients 
 H(-2) = 0.1 
 H(-1) = 0.2 
 H(0) = 0.4 
 H(1) = 0.2 
 H(2) = 0.1 ' note that the sum of 

the coefficients = 1 
 For I = 1 to 1000 
  Arr1(I) = Data(I) ' fill the first array with 

the raw data 
 Next I 
 For I = 3 to 998 ' this is where the 

smoothing takes place 
  Avg = 0 
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  For J = -2 to 2 
   Avg = Avg + Arr1(I+J) * H(J) 
  Next J 
  Arr2(I) = Avg 
 Next I 

In this case, we have applied a “triangular” 
low pass filter to the original data. 

Most importantly, this introduces the con-
cept of using a set of coefficients that are multi-
plied with the original data to form a new set of 
data. 
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Fortunately, and especially because this au-
thor is unqualified to properly explain the theo-
retical background for this area, workers in the 
field have written readily available programs to 
generate useful sets of coefficients. These pro-
grams are available as commercial software, 
shareware, and freeware.[d] 

By using suitable sets of coefficients, one may 
obtain low-pass, high-pass, band-pass, band-
stop, and differentiated data sets without ever 
permanently changing the original stored data. 

It should be noted that the above method 
does not incorporate any output terms as an in-
put to a later step, as with recursive filters. Per-
haps the simplest recursive filter that the author 
is aware of[e] is shown in this example: 

 Dim Arr1(1000)  'create an array, capable 
of holding 1000 data 
points 

 C1 = .7 'a selected value 0 < C1 
< 1 

 C2 = 1 – C1 
 For I = 2 to 1000 
  Arr1(I) = C1 * Arr(I – 1) + C2 * Arr(I) 
 Next I 

Notice, that in this method, any data (after 
the first) is dependent on earlier data.  

A more exact, and flexible, method to ac-
complish this filtering is to perform a Fourier[f] 
transform of the time domain data to the fre-
quency domain, remove the unwanted frequen-
cies, and then perform an inverse transforma-
tion back to the time domain. There are capa-
bilities to perform these operations in many 

data analysis programs.[d] However, they are not 
so quick and easy to incorporate in small pro-
grams written to accomplish some task at hand. 

As an example, Figure 1 shows the results of 
a test intended to measure the force exerted by a 
small pyrotechnic piston actuator. The data was 
acquired at a rate of 5E-6 seconds per point. 
Each of the data presentations includes a base-
line and an arbitrary upper reference line. The 
first waveform shows the “raw” data as ac-
quired. The successive waveforms show the 
effect of increased (lower frequency – low pass) 
filtering, while the last waveform shows the 
result of subtracting the 250 Hz filtered data 
from the raw data. This would represent only 
the “noise” above 250 Hz in the raw data, and it 
appears to be caused by two different excitation 
modes of the test fixture at approximately 3000 
and 200 Hz. These two modes were thought to 
be caused by the vibration of a large mounting 
plate for the low frequency component, and a 
much smaller plate mounted at right angle to 
the large plate for the higher frequency. If de-
sired this could have been determined by me-
chanically exciting the fixture, or parts of the 
fixture, using some small impact device to 
simulate the shock/impulse caused by the pyro-
technic actuator. 

The effect of the digital filter before time 
“zero” is evident in the 500 and 250 Hz filtered 
waveforms. This could be eliminated/minimized 
by prefixing additional baseline data to the 
waveform prior to filtering it. 

Inspection of these waveforms will make 
clear the importance of specifying how data is 
to be treated along with a set of requirements 
for the performance of an item. In this case, 
perhaps, the “time to function” might be speci-
fied to be determined from “raw” or “2000 Hz 
filtered” data, while the “peak effective force” 
might be required to be determined from a 
“500 Hz filtered” data set. 

While the use of filtering will always have 
an effect on the magnitude, phase, and absolute 
time represented by the filtered data, in prac-
tice, and with judicious care, these effects will 
usually be found to be within an acceptable 
range when making physical measurements. 
However, one must always keep in mind the 
possibility that filtered data, under certain cir-
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cumstances, may not be a sufficiently accurate 
representation of the actual physical event. 

Notes 

a. Nyquist Limit: Fs = frequency of sampling, 
Y(t) has a band limited spectrum  

 0
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b. If sampling is done at a frequency less than 
the Nyquist Limit, then some high frequency 
information in the analog signal will be 
shifted into the lower frequencies giving 
spurious data.  
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Figure 1.   Data Filtering Examples. 
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c. Qbasic can be found in the directory 
OLDMSDOS on Windows 95 and 98 disks. 

d. The author suggests a search of the World 
Wide Web for finding such software and 
other available information. 

e. Wm. Mattox, personal correspondence. 

f. The forward and inverse Fourier transforms 
are: 
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