Chapter 7 - Equations for Practical Use in Designing Shells

7.1 The Characteristics of Stars and the Preparation of Tables of Star Ballistics

Equations 71 and 72 are written again:

$$
\begin{align*}
& v=v_{0}\left\{1-\left(\frac{A_{s}}{3}\right) \log \frac{\left(1-\tau^{\prime}\right)^{3}+b}{1+b}\right\}^{-1.075} \tag{71}\\
& x=v_{0} T^{\prime} \int_{0}^{\tau_{1}}\left\{1-\left(\frac{A_{s}}{3}\right) \log \frac{\left(1-\tau^{\prime}\right)^{3}+b}{1+b}\right\}^{-1.075} d \tau^{\prime} \tag{72}
\end{align*}
$$

When ballistic functions are set as follows:

$$
\begin{align*}
F_{v} & =F_{v}\left(A_{s}, \tau^{\prime}, b\right) \\
& =\left\{1-\left(\frac{A_{S}}{3}\right) \log \frac{\left(1-\tau^{\prime}\right)^{3}+b}{1+b}\right\}^{-1.075} \tag{101}\\
F_{x} & =F_{x}\left(A_{s}, \tau^{\prime}, b\right) \\
& =\int_{0}^{\tau^{\prime}}\left\{1-\left(\frac{A_{s}}{3}\right) \log \frac{\left(1-\tau^{\prime}\right)^{3}+b}{1+b}\right\}^{-1.075} d \tau^{\prime} \tag{102}
\end{align*}
$$

equations 71 and 72 become:

$$
\begin{align*}
& v=v_{0} F_{v} \tag{103}\\
& x=v_{0} T^{\prime} F_{x} \tag{104}
\end{align*}
$$

The tables in the Appendix list the calculated values from equations 101 and 102 where $b=0$ and $b=0.5$.

7.2 Investigation of Star Ballistics in the Air from the Ballistic Tables

From equations 103 and 104 we have:

$$
F_{v}=\frac{v}{v_{0}}, F_{x}=\frac{x}{v_{0} T^{\prime}}
$$

Therefore, for a single colored star, the function F_{v} shows the ratio of the flight velocity to the
initial velocity, and F_{x} shows the ratio of the actual flight distance to the imaginary flight distance with no air resistance. The larger the values of F_{v} and F_{x} are, the greater the movement of the star. Figures 41A and B and 42A and B show the values of the functions F_{v} and F_{x}, when $\mathrm{b}=0.0$ and $\mathrm{b}=0.5$.

The values of A_{s} are denoted as follows from equation 70 ' without the subscript 1 for R, T, and δ

$$
A_{s}=0.774 v_{0}^{0.93} \frac{1}{R / T^{\prime}} \cdot \frac{1}{\delta}
$$

In the above equation, R / T^{\prime} means the burning velocity and δ means the density of the burning layer. Therefore, when the value of v_{o} is constant, the larger the burning velocity, the smaller the value of A_{s}, and the larger the specific density, the smaller the value of A_{s}. Figures 41 and 42 show that the smaller the value of A_{s}, the larger the values of F_{v} and F_{x}. Therefore, when the burning velocity R / T^{\prime} and the specific density of the star are larger, then the star flies further.

The value of b is denoted from equation 67^{\prime} as follows:

$$
b=\left\{\begin{array}{l}
\ldots+\left(\frac{R_{4}}{R_{1}}\right)^{3}\left(\frac{\delta_{4}}{\delta_{1}}-\frac{\delta_{3}}{\delta_{1}}\right)+ \\
\left(\frac{R_{3}}{R_{1}}\right)^{3}\left(\frac{\delta_{3}}{\delta_{1}}-\frac{\delta_{2}}{\delta_{1}}\right)+\left(\frac{R_{2}}{R_{1}}\right)^{3}\left(\frac{\delta_{2}}{\delta_{1}}-1\right)
\end{array}\right\}
$$

If there is a relationship between the layers of a star:

$$
\delta_{1}<\delta_{2}<\delta_{3}<\ldots
$$

the value of b becomes larger and larger as burning proceeds. Comparing $b=0$ and $b=0.5$ in the graphs in Figures 41 and 42, we see that the decrease in velocity of the star is less with b $=0.5$ than with $b=0.0$. Furthermore, the flight distance for $\mathrm{b}=0$ is greater than for $b=0.5$. In

Figure 41. Velocity functions.

Figure 42. Distance functions.
other words, a star, of which the density becomes greater and greater, produces the best effect. Special attention should be paid to the condition when $b=0$ and $F_{v}=0$. However, when $b>$ 0 under $\tau=1, F_{v}$ has a limited value.

7.3 The Method For Obtaining the Function
 $\boldsymbol{F}_{v}\left(\tau^{\prime}, A_{s}, \mathbf{b}\right)$ from $\boldsymbol{F}_{\nu}\left(\tau^{\prime}, A_{s}, \mathbf{0}\right)$

The ballistic tables in the Appendix were made for $b=0$ and $b=0.5$. For other values of b, they do not correspond. However, with the
following method, it is possible to obtain the data from $F_{v}\left(t^{\prime}, A_{s}, 0\right)$. The function of the problem is set as:

$$
F_{v}\left(\tau_{x}^{\prime}, A_{s}, b\right)
$$

It is equated with:

$$
\begin{equation*}
F_{v}\left(\tau_{x}^{\prime}, A_{s}, 0\right)=F_{v}\left(\tau^{\prime}, A_{s}, b\right) \tag{105}
\end{equation*}
$$

Both sides are substituted into equation 72 to give:

$$
\begin{aligned}
& \left\{1-\left(\frac{A_{S}}{3}\right) \log \left(1-\tau_{x}^{\prime}\right)^{3}\right\}^{-1.075} \\
= & \left\{1-\left(\frac{A_{S}}{3}\right) \log \frac{\left(1-\tau^{\prime}\right)^{3}+b}{1+b}\right\}^{-1.075}
\end{aligned}
$$

From this equation we have:

$$
\begin{align*}
& \log \left(1-\tau_{x}^{\prime}\right)^{3}=\log \frac{\left(1-\tau^{\prime}\right)^{3}+b}{1+b} \tag{106}\\
& \tau_{x}^{\prime}=1-\sqrt[3]{\frac{\left(1-\tau^{\prime}\right)^{3}+b}{1+b}}=\tau\left(\tau^{\prime}, b\right)
\end{align*}
$$

Therefore, the value of $F_{v}\left(\tau, A_{s}, b\right)$ is equal to the value $F_{v}\left(\tau_{x}^{\prime}, A_{s}, 0\right)$, which is calculated with the value τ_{x}^{\prime}. Therefore from the table for $F_{v}\left(\tau^{\prime}, A_{s}, 0\right)$ we can obtain the values of $F_{v}\left(\tau, A_{s}, b\right)$. For this purpose a table of $F(\tau, b)$ was prepared. The values of $F_{x}\left(\tau, A_{s}, b\right)$ are simply not available. In this case it is necessary to calculate the function $F_{v}\left(\tau^{\prime}, A_{s}, b\right)$ and to integrate step by step.

7.4 An Examination of the Equations of Initial Velocity of Stars

From equation 100, setting three equations as:

$$
\begin{align*}
& f_{1}=(f \varpi)^{0.450} \\
& f_{2}=\left(\frac{p}{\sigma}\right)^{-0.377} \tag{107}\\
& f_{3}=A^{-0.352} e^{-\frac{13.42}{\text { and }}}
\end{align*}
$$

we have

$$
\begin{equation*}
\bar{V}=5.91 \times(1 \pm 0.084) f_{1} \cdot f_{2} \cdot f_{3} \tag{108}
\end{equation*}
$$

Here it should be noted that equations 100 and 108 are empirical and apply for loading densities in the range $0.27 \sim 0.33$.

Special attention should be given to Figure 45 with the function f_{3}. When different types of paper are used with the same value of an in total, the value of f_{3} moves along the same an curve. When the value an is relatively small, the curve f_{3} does not show the maximum. However, when an shows a high value, the curve shows a maximum as an = 12 or 16 . For example, when pasting with standard Japanese paper

Figure 43. Function f_{1} for the initial velocity of star.
on a shell where an $=8$ and $A=5.0$, we have f_{3} $=0.41$. If the bursting charge is replaced with that which shows a slower burning rate ($A=$ 1.5), the same value for f_{3} as above can be obtained when an $=12$. In this case, one should paste 12 layers per sun. When the pasting layers of paper increase to a large amount, the effect of the force on projecting stars by the bursting

Figure 44. Function f_{2} for initial velocity of star.

Figure 45. Function f_{3} for initial velocity of star.
charge increases in a similar manner.

7.5 The Relationship between the

Deviations of Initial Velocity $\frac{\Delta V}{V}$ and

 the Deviations of Flight Distances $\frac{\Delta x_{1}}{x_{1}}$The flight distance of a star along the horizontal axis during the burning of the first layer of the star is shown in equation 104.

$$
x_{1}=V T_{1}^{\prime} F_{x}\left(A_{s}, \tau^{\prime}, b_{1}\right)
$$

If the construction of the star is unchanged and $T^{\prime}{ }_{1}, \tau^{\prime}, b_{1}$ are constant, the equation is differentiated as:

$$
\begin{equation*}
\frac{d x_{1}}{x_{1}}=\frac{d V}{V}+\frac{d F_{x}}{F_{x}} \tag{109}
\end{equation*}
$$

On the other hand:

$$
\begin{equation*}
\frac{d F_{x}}{F_{x}}=\left(\frac{A_{s}}{F_{x}} \cdot \frac{\partial F_{x}}{\partial A_{s}}\right) \frac{d A_{s}}{A_{s}} \tag{110}
\end{equation*}
$$

If, as an approximation, the exponent of V is put as 1 ,

$$
\begin{equation*}
A_{s}=0.774 \mathrm{~V} \cdot \frac{1}{w_{1} \delta_{1}} \tag{111}
\end{equation*}
$$

If this is then differentiated by the logarithmic method, we have:

$$
\frac{d A_{s}}{A_{s}}=\frac{d V}{V}
$$

Introduce this into equation 110:

$$
\begin{equation*}
\frac{d F_{x}}{F_{x}}=\left(\frac{A_{s}}{F_{x}} \cdot \frac{\partial F_{x}}{\partial A_{s}}\right) \frac{d V}{V} \tag{112}
\end{equation*}
$$

Introducing equation 112 into equation 109:

$$
\begin{equation*}
\frac{d x_{1}}{x_{1}}=\frac{d V}{V}\left(1+\frac{A_{s}}{F_{x}} \cdot \frac{\partial F_{x}}{\partial A_{s}}\right) \tag{113}
\end{equation*}
$$

In equation 113 we set:

$$
\Sigma A_{s}=1+\frac{A_{s}}{F_{x}} \cdot \frac{\partial F_{x}}{\partial A_{s}}=\Sigma A_{s}\left(A_{s}, \tau^{\prime}, b\right)
$$

and when $d x_{I}$ and $d V$ are replaced by the deviations Δx and ΔV, equation 113 becomes:

$$
\begin{equation*}
\frac{\Delta x_{1}}{x_{1}}=\Sigma A_{s} \frac{\Delta V}{V} \tag{115}
\end{equation*}
$$

Equation 115 is generalized as:

$$
\begin{equation*}
\frac{\Delta x_{i}}{x_{i}}=\Sigma A_{s} \frac{\Delta v_{0_{i}}}{v_{0_{i}}} \tag{115'}
\end{equation*}
$$

Equations 115 and 115' are equations to denote the relationship of the deviation of the initial velocity and horizontal flight distance. The values of $\Sigma A_{s}=\left(1+\frac{A_{s}}{F_{x}} \frac{\partial F_{x}}{\partial A_{s}}\right)$ are shown in the Appendix in Table 2.

Generally, as the value of A_{s} increases, the values of ΣA_{s} become smaller. This shows that as the value of A_{s} increases, small deviations in the value of the initial velocity do not have much affect upon the flight distances.

