Chapter 4 - Method for Experiments on Shell Burst, Preparation and Preliminary Calculations

4.1. Experimental Method

Three types of bursting charge were prepared:
a) potassium perchlorate
b) black powder
c) potassium chlorate

The stars were made with potassium perchlorate as the oxidizer.

Sample 5- and 6-inch chrysanthemum shells were prepared with these materials. The shells were reinforced by pasting them with Japanese or Kraft paper. The samples were ranked based on the number of paper layers.

Samples prepared in this way were exploded at a height of 1 m above the ground at night and the movement of the stars was photographed with a still camera (through a revolving shutter driven by a synchronous motor) and also with a $16-\mathrm{mm}$ movie camera.

4.2. Aims of the Experiments

(1) To obtain the relationships between the size of the star, density of the star, type of burst charge and the break strength of the shell.
(2) To find the relationships between the velocity of the stars and air resistance, including the effect of the diameter, density, and burning velocity of a star.

4.3 Types of Sample Chrysanthemum Shells, their Construction and Preparation

4.3.1. Stars

(1) Types of Stars and their Symbols

Six types of stars were prepared. They were identified with the following symbols:

Dia. (mm)	Amber	Blue	Green
8	C_{8}	$\mathrm{~B}_{8}$	G_{8}
12	C_{12}	$\mathrm{~B}_{12}$	G_{12}

(2) Construction of Stars

Using 3-mm flash stars as the core, compositions SKC, SKB or SKG were pasted in the usual way for round stars. The flash core was used to show clearly the end point of the burning.

(3) Compositions of the Stars

SKC_{6} (Amber Star)	
Potassium nitrate	53.7\%
Sulfur	6.5\%
Pine charcoal	32.3\%
Glutinous rice starch	7.5\%
SKB (Blue star)	
Potassium perchlorate	64.0\%
Paris green	17.0\%
Pine root pitch	13.0\%
Glutinous rice starch	6.0\%
SKG (Green star)	
Potassium perchlorate	46.0\%
Barium nitrate	32.0\%
Pine root pitch	16.0\%
Glutinous rice starch	6.0\%
SBF (Flash)	
Barium nitrate	67.0\%
Aluminum (fine flake)	27.0\%
Glutinous rice starch	6.0\%

SBKF
(pasted on the flash core to ignite easily)

Barium nitrate	34.0%
Potassium perchlorate	34.0%
Aluminum (fine flake)	10.0%
Pine root pitch	8.0%
Antimony trisulfide	9.0%
Glutinous rice starch	5.0%

SKC_{8} (Amber composition called
Eight Chrysanthemum)

Potassium nitrate	48.5%
Sulfur	5.8%
Pine charcoal	38.8%
Glutinous rice starch	6.9%
SKC	
Potassium nitrate	75.0%
Sulfur	10.0%
Hemp charcoal	15.0%
Glutinous rice starch	1.5% (add. $\%$)

Eight Chrysanthemum means the ratio of the charcoal to the oxidizer is $8: 10$ in weight ratio.

(4) Diameter of Stars

Twenty five sample stars were selected from each manufactured batch of stars. The maximum and minimum diameters of each star were measured. In the following tables the maximum and minimum, or minimum and maximum, diameters are recorded for each sample star.

$\mathbf{C}_{\mathbf{8}}$ (Amber star, $\mathbf{8} \mathbf{~ m m}$ dia.)					
	mm	mm		mm	mm
1	8.38	8.52	14	8.92	8.50
2	9.05	8.52	15	8.55	8.37
3	8.78	8.80	16	8.76	8.76
4	8.51	8.69	17	8.49	8.66
5	8.45	8.77	18	8.52	8.48
6	8.77	8.74	19	8.40	8.35
7	8.60	8.75	20	8.29	8.74
8	8.72	8.29	21	8.31	8.40
9	8.48	8.50	22	8.49	8.40
10	8.25	8.47	23	8.67	8.81
11	8.80	8.62	24	8.50	8.36
12	8.63	8.82	25	8.71	8.59
13	8.88	9.35	Ave. 8.61 mm		

The difference between the measured value and the average is denoted by v, and the number of the stars is denoted by n. The probability deviation r of the diameters of the stars is calculated as follows:

$$
\begin{aligned}
r & =0.6745 \sqrt{\frac{\sum v^{2}}{n-1}} \\
& =0.6745 \sqrt{\frac{0.048134}{50-1}} \\
& =0.15 \mathrm{~mm}
\end{aligned}
$$

Editor's note: There is a 50% probability that an individual result will be in the range given by (average \pm probability deviation).
C_{12} (Amber Star, 12 mm dia.)

	mm	mm		mm	mm
1	12.28	12.32	16	12.76	12.53
2	12.68	12.35	17	12.11	12.00
3	12.69	12.29	18	12.86	12.11
4	12.35	12.57	19	11.98	11.94
5	12.10	12.18	20	12.33	12.12
6	12.18	11.83	21	12.19	12.37
7	12.15	11.88	22	12.29	12.35
8	12.13	12.64	23	12.28	11.82
9	12.35	12.50	24	12.12	12.22
10	12.18	12.13	25	11.95	11.82
11	12.20	12.16	Ave. $=12.26 \mathrm{~mm}$		
12	12.14	11.82			
13	12.28	12.69	$\mathrm{r}=0.18 \mathrm{~mm}$		
14	12.68	12.63			
15	12.20	12.17			

B_{8} (Blue Star, $\mathbf{8} \mathbf{m m}$ dia.)

	mm	mm		mm	mm
1	8.96	9.10	16	8.60	8.70
2	8.88	8.76	17	9.07	8.96
3	8.87	8.76	18	8.80	8.93
4	8.88	8.82	19	8.77	8.56
5	9.05	9.06	20	8.84	8.83
6	8.45	8.57	21	9.02	8.83
7	8.37	8.84	22	8.56	8.45
8	8.89	8.84	23	8.95	8.75
9	8.34	8.45	24	8.45	8.59
10	8.07	8.02	25	8.83	8.82
11	8.73	8.67	Ave. $=8.73 \mathrm{~mm}$		
12	9.20	9.32			
13	8.43	8.52			
14	8.34	8.53	$\mathrm{r}=0.18 \mathrm{~mm}$		
15	8.71	8.82			

B_{12} (Blue Star, 12 mm dia.)

	mm	mm		mm	mm
1	12.70	12.30	16	12.30	12.48
2	12.39	12.38	17	11.88	12.19
3	12.37	12.53	18	12.15	12.32
4	11.73	11.88	19	12.25	12.44
5	11.67	11.70	20	12.25	12.28
6	11.92	12.60	21	11.74	11.64
7	12.00	12.05	22	12.69	12.62
8	12.16	12.23	23	11.63	11.69
9	11.84	11.80	24	12.15	12.20
10	11.77	11.50	25	12.41	12.27
11	11.61	11.82	Ave. $=12.11 \mathrm{~mm}$		
12	12.16	12.15			
13	11.88	12.73			
14	12.65	12.34	$\mathrm{r}=0.22 \mathrm{~mm}$		
15	11.64	11.87			

\mathbf{G}_{12} (Green Star, 12 mm dia.)

	mm	mm		mm	mm
1	12.29	12.19	16	12.03	12.10
2	12.20	12.18	17	12.19	12.39
3	12.29	12.33	18	11.47	12.44
4	12.16	12.13	19	12.37	12.10
5	12.23	12.40	20	12.38	12.10
6	12.05	12.17	21	11.39	11.49
7	12.06	12.10	22	12.44	12.35
8	11.90	12.11	23	12.30	12.07
9	12.44	12.17	24	12.68	12.60
10	12.68	12.80	25	12.36	12.34
11	12.00	12.37	Ave. $=12.23 \mathrm{~mm}$		
12	12.14	12.25			
13	12.14	12.15			
14	12.70	12.70	$\mathrm{r}=0.19 \mathrm{~mm}$		
15	12.34	12.27			

\mathbf{F}_{5} (Flash Star, 5 mm dia.)

	mm	mm		mm	mm
1	5.0	5.0	7	5.0	5.0
2	4.8	4.7	8	4.5	4.9
3	4.5	4.7	9	5.0	5.0
4	4.7	4.7	10	5.3	5.6
5	4.9	5.1	Ave. $=4.92 \mathrm{~mm}$		
6	4.9	5.0			

Note: in this case only ten stars were sampled.

(5) Mass, Density, Sectional Density, and Bulk Density (Mass of 1 Liter of Stars)

100 sample stars from a manufactured batch were selected and weighed. The result was divided by 100 to obtain the average mass of one star. The density of the layers was calculated as shown below.

Setting m_{l} as the mass of a star, m_{2} as the mass of a flash core, r_{1} as the radius of a star, and r_{2} as the radius of a flash core; then δ_{1} the density of the colored zone and δ_{2} the density of the flash zone were calculated using the following equations:

$$
\delta_{1}=\frac{m_{1}-m_{2}}{\frac{4}{3} \pi\left(r_{1}^{3}-r_{2}^{3}\right)}, \delta_{2}=\frac{m_{2}}{\frac{4}{3} \pi r_{2}^{3}}
$$

In the same way, the initial sectional densities (i.e., mass of the star divided by the maximum cross-sectional area) p_{1}^{\prime} and p_{2}^{\prime} were calculated:

$$
p_{1}^{\prime}=\frac{m_{1}}{\pi r_{1}^{2}}, p_{2}^{\prime}=\frac{m_{2}}{\pi r_{2}^{2}}
$$

Introducing the data to these equations, we have the results shown in Table 5. The bulk density δ^{\prime} indicates the total mass of the stars that will fill a 1-liter container.

Table 5. Average Mass, m_{1}, Density, δ_{1}^{\prime}, Sectional Density, p_{1}^{\prime}, and Bulk Density $\boldsymbol{\delta}_{2}^{\prime}$ of the Stars.

Param.	Unit	C_{8}	$\mathrm{~B}_{8}$	C_{12}	$\mathrm{~B}_{12}$	G_{12}	Param.	Unit	F_{5}
m_{1}	g	0.47	0.55	1.30	1.47	1.56	m_{2}	g	0.11
δ_{1}	$\mathrm{~g} / \mathrm{cm}^{3}$	1.34	1.59	1.48	1.62	1.64	δ_{2}	$\mathrm{~g} / \mathrm{cm}^{3}$	1.65
p_{1}^{\prime}	$\mathrm{g} / \mathrm{cm}^{2}$	0.80	0.93	1.11	1.27	1.34	p_{2}^{\prime}	$\mathrm{g} / \mathrm{cm}^{2}$	0.58
δ_{1}^{\prime}	kg / l	0.78	0.84	0.72	0.86	0.82	δ_{2}^{\prime}	kg / l	1.06

(6) The Burn Time for Stars in the Air when the Stars Are Not Moving

The stars were placed on the ground and ignited. The burn time was measured with a stopwatch.

	S		S		S
1	2.8	11	1.6	21	1.4
2	1.4	12	1.4	22	1.8
3	1.8	13	1.4	23	1.4
4	1.8	14	1.2	24	0.8*
5	2.0	15	0.8*	25	1.0*
6	1.8	16	1.4	26	1.4
7	1.0*	17	1.6	27	1.6
8	1.4	18	2.0	28	1.8
9	1.8	19	1.4	29	1.4
10	1.0	20	1.8	30	1.0
Ave $=1.59 \mathrm{~s}$					

Note: The stars marked with * stopped burning before the flash, and they were omitted from the calculation.
C_{12}

	s		s		s
1	2.0	11	2.2	21	2.4
2	2.2	12	2.4	22	2.6
3	2.4	13	2.0	23	2.0
4	1.6^{*}	14	1.4^{*}	24	1.8
5	2.2	15	2.4	25	2.2
6	1.4^{*}	16	2.4	26	2.0
7	1.6^{*}	17	1.2^{*}	27	2.0
8	2.0	18	1.8	28	1.6^{*}
9	1.6	19	1.6^{*}	29	2.2
10	2.2	20	2.4	30	2.0
Ave. $=2.17 \mathrm{~s}$					

Note: The stars marked with * stopped burning before the flash, and they were omitted from the calculation.

B_{8}

	s		s		s
1	1.2	11	1.2	21	1.4
2	1.4	12	1.2	22	1.1
3	1.4	13	1.3	23	1.2
4	1.2	14	1.1	24	1.2
5	1.2	15	1.2	25	1.0
6	1.2	16	1.0	26	1.0
7	1.0	17	1.2	27	1.0
8	1.0	18	1.2	28	1.2
9	1.2	19	1.2	29	1.2
10	1.6	20	1.2	30	1.4
Ave. $=1.20 \mathrm{~s}$					

B_{12}

	s		s		s
1	2.0	11	2.0	21	2.2
2	2.0	12	1.8	22	2.0
3	2.0	13	1.8	23	2.0
4	1.8	14	1.6	24	2.0
5	2.0	15	1.8	25	2.0
6	2.0	16	1.8	26	1.8
7	1.8	17	2.0	27	2.2
8	2.0	18	2.2	28	1.8
9	2.0	19	2.0	29	2.0
10	2.0	20	2.0	30	2.0
Ave. $=1.95 \mathrm{~s}$					

G_{12}

	s		s		s
1	3.2	11	3.0	21	3.2
2	2.8	12	3.0	22	3.0
3	2.6	13	3.2	23	3.0
4	2.8	14	3.2	24	3.2
5	3.0	15	3.0	25	2.8
6	2.8	16	2.8	26	2.8
7	2.6	17	2.8	27	3.0
8	3.0	18	3.2	28	3.0
9	3.0	19	3.0	29	3.2
10	3.0	20	3.0	30	3.0
Ave. $=2.97 \mathrm{~s}$					

F_{5}

	s		s
1	0.6	6	0.4
2	1.0	7	0.6
3	0.4	8	1.0
4	0.2	9	0.6
5	0.4	10	0.8
Ave. $=0.60 \mathrm{~s}$			

4.3.2. Burst Charge

(1) Types and Symbols

Three types were prepared, identified with the following symbols:

Symbol	Component	Mixing Ratio (\%)
H	Potassium chlorate	75.0
	Hemp charcoal	25.0
	Glutinous rice starch	2.0 (Add'l.)
P	Potassium perchlorate	70.0
	Hemp charcoal	18.0
	Sulfur	12.0
	Glutinous rice starch	2.0 (Add'l.)
S	Potassium nitrate	75.0
	Hemp charcoal	15.0
	Sulfur	10.0
	Glutinous rice starch	2.0 (Add'l.)

(2) Construction of the Burst Charge

The \mathbf{H} and \mathbf{P} burst charges were made as follows: The component materials were mixed by sieving, some water was added, and the resulting mixture was kneaded. The burst charge was then coated on cottonseeds and dried in the sun. The \mathbf{S} burst charge was made as follows: The mixture was placed in a ball mill containing wooden balls and milled for 18 hours. Then the mixture was coated on cottonseeds and dried in the sun. The construction data are as follows.

	\mathbf{H}	P	S
Weight of the charge (in kg) per 1 kg cottonseeds	1.313	1.625	1.288
Bulk density of the powdered charge	0.583	0.722	0.572
Bulk density of the completed charge	0.556	0.556	0.528

The thickness of the burst charge that was coated on the cottonseeds was measured as follows: twenty completed grains were selected and they were measured to determine the shortest, middle and the longest diameters, d_{1}, d_{2}, d_{3}, of each ellipsoid, then the grains were washed to remove their coatings and the lengths of the cottonseeds, $d_{1}{ }^{\prime}, d_{2}^{\prime}$, d_{3} ', were again measured. The thickness was calculated by the following formulae.

$$
\begin{aligned}
& t_{1}=\frac{d_{1}-d_{1}^{\prime}}{2} \\
& t_{2}=\frac{d_{2}-d_{2}^{\prime}}{2} \\
& t_{3}=\frac{d_{3}-d_{3}^{\prime}}{2}
\end{aligned}
$$

The thickness (in mm) was obtained from $\left(t_{1}+\right.$ $\left.t_{2}+t_{3}\right) / 3$. The results of the measurement are as follows:

No.	d_{1}	d_{1}^{\prime}	t_{1}	d_{2}	d_{2}^{\prime}	t_{2}	d_{3}	d_{3}^{\prime}	t_{3}
1	5.22	4.66	0.28	5.65	4.64	0.51	7.65	6.68	0.49
2	5.65	4.34	0.66	5.84	4.65	0.60	8.18	8.85	0.67
3	6.04	4.60	0.72	6.66	5.16	0.75	8.43	7.61	0.41
4	5.73	5.00	0.37	6.31	5.66	0.33	9.13	8.09	0.52
5	7.08	4.68	1.20	6.72	5.19	0.77	9.25	7.51	0.87
6	5.63	4.41	0.61	6.00	5.28	0.36	8.18	7.18	0.50
7	5.18	4.65	0.27	5.73	5.14	0.30	8.17	7.57	0.30
8	5.70	4.30	0.70	6.67	5.66	0.51	9.15	7.35	0.90
9	5.31	4.57	0.37	6.14	5.38	0.38	8.67	7.38	0.65
10	5.00	4.57	0.22	5.36	5.00	0.18	8.15	7.38	0.39
11	5.29	4.30	0.50	6.80	5.28	0.76	10.18	7.65	1.27
12	4.75	4.48	0.14	5.81	5.59	0.11	7.13	6.85	0.14
13	5.51	4.30	0.61	6.65	4.95	0.85	8.63	7.11	0.76
14	5.40	4.76	0.32	5.98	5.06	0.36	8.68	7.38	0.65
15	5.15	4.76	0.20	5.68	4.78	0.45	8.57	7.67	0.45
16	4.59	3.26	0.67	5.28	4.46	0.41	6.65	6.38	0.14
17	4.57	5.00	0.25	5.70	5.17	0.27	8.68	7.70	0.49
18	4.94	4.25	0.35	6.62	5.14	0.74	9.70	7.67	1.02
19	5.15	4.81	0.17	5.42	4.95	0.24	8.05	6.50	0.78
20	4.50	3.86	0.32	5.25	4.95	0.15	8.12	8.03	0.05
Ave.			0.45			0.45			0.57
	0.49 mm								

P

No.	d_{1}	d_{1}^{\prime}	t_{1}	d_{2}	d_{2}^{\prime}	t_{2}	d_{3}	d_{3}^{\prime}	t_{3}
1	5.69	4.79	0.45	6.62	5.13	0.75	9.55	7.60	0.98
2	5.19	4.75	0.22	5.52	4.72	0.40	8.57	7.60	0.49
3	5.11	5.00	0.06	7.87	5.11	1.38	8.67	7.15	0.76
4	5.33	4.65	0.34	6.03	4.91	0.56	8.25	7.17	0.54
5	5.43	4.51	0.46	6.11	5.93	0.09	8.32	7.06	0.63
6	5.80	4.55	0.63	5.09	4.69	0.20	7.75	6.65	0.55
7	5.32	4.09	0.62	6.66	4.96	0.85	8.25	7.09	0.58
8	5.31	4.61	0.35	5.85	4.93	0.46	8.35	7.77	0.29
9	5.56	4.71	0.43	5.59	5.04	0.28	8.20	7.24	0.48
10	5.68	5.00	0.34	5.75	5.06	0.35	9.38	7.79	0.80
11	5.40	4.69	0.36	5.90	5.36	0.27	8.20	7.75	0.23
12	4.80	4.12	0.34	5.65	4.77	0.44	8.28	7.55	0.37
13	5.32	4.37	0.48	5.97	5.23	0.37	10.41	7.55	1.43
14	5.88	4.95	0.47	6.43	5.47	0.48	8.50	7.12	0.69
15	4.79	4.15	0.32	5.48	5.11	0.19	8.30	6.77	0.77
16	5.05	4.38	0.34	5.62	4.85	0.39	9.31	7.33	0.99
17	5.33	4.61	0.36	5.56	5.25	0.16	8.17	7.10	0.54
18	4.84	4.17	0.34	4.91	4.48	0.27	8.12	6.75	0.67
19	5.13	4.24	0.45	5.22	5.20	0.01	7.63	6.52	0.41
20	4.90	3.82	0.54	5.35	4.48	0.44	7.68	6.31	0.69
Ave.			0.40			0.41			0.65
	0.49 mm								

No.	d_{1}	d_{1}^{\prime}	t_{1}	d_{2}	d_{2}^{\prime}	t_{2}	d_{3}	d_{3}^{\prime}	t_{3}
1	5.63	4.89	0.37	5.74	4.90	0.42	8.60	6.79	0.91
2	6.33	4.85	0.74	6.83	5.21	0.81	9.54	7.21	1.17
3	5.10	4.47	0.32	5.70	5.14	0.28	8.32	6.86	0.73
4	5.09	4.71	0.19	5.47	5.00	0.24	8.39	7.17	0.61
5	4.97	4.42	0.28	6.20	5.26	0.47	8.77	7.30	0.75
6	4.93	4.04	0.45	5.12	4.54	0.29	8.10	6.83	0.64
7	5.03	4.17	0.43	5.60	4.92	0.34	8.61	6.73	0.84
8	5.17	4.77	0.20	5.55	4.82	0.37	8.60	7.20	0.70
9	5.14	4.74	0.20	5.95	5.38	0.29	8.90	7.56	0.67
10	4.94	4.36	0.29	6.07	5.61	0.23	8.03	7.25	0.39
11	5.02	4.30	0.36	5.45	5.05	0.20	9.35	6.70	1.23
12	4.73	4.08	0.33	5.65	5.07	0.29	8.12	6.90	0.61
13	5.17	4.36	0.41	6.09	5.12	0.49	8.57	7.65	0.46
14	5.07	4.05	0.51	5.62	5.41	0.11	8.18	7.60	0.29
15	5.42	4.42	0.50	6.00	5.12	0.44	7.80	7.17	0.32
16	4.92	4.26	0.33	5.10	4.75	0.18	8.45	7.04	0.71
17	5.55	4.97	0.29	5.72	4.73	0.50	9.12	7.56	0.78
18	4.88	4.27	0.31	5.62	5.10	0.26	8.62	6.68	0.97
19	4.73	4.05	0.34	5.35	4.67	0.34	8.21	7.50	0.36
20	4.70	4.01	0.35	5.44	4.30	0.57	8.07	6.98	0.55
Ave.			0.36			0.36			0.68
	0.47 mm								

From the above measurements, we see that although the thicknesses are very irregular, the average values are similar, and the values range from 0.47 to 0.49 mm .

(3) Sensitiveness Test by Drop Hammer

The results of drop hammer tests for the burst charges, \mathbf{H}, \mathbf{P}, and \mathbf{S} are shown in Figure 13. For comparison the data from tests of picric acid are also shown. The mass of the hammer was 2 kg and the thickness of the tinfoil cover of the sample was 0.05 mm . From the results we see that the \mathbf{S} burst charge is the most insensitive and \mathbf{H} and \mathbf{P} have almost the same sensitiveness. The problem of fireworks safety is very complicated and these data only serve as an indication of the relative sensitiveness.

(4) Calculation of Characteristic Values of Burst Charges

1. Calorimetric Data of Solids and Gases

(a) The Internal Energy of Gases

The internal energies at various temperatures were calculated by means of statistical mechanics, using the normal vibration numbers from spectral analysis with the standard vibration number at $\left.15^{\circ} \mathrm{C}\left[=E_{15^{\circ}} \mathrm{C}(\mathrm{T}) / \mathrm{J} \mathrm{kcal} / \mathrm{mol}\right)\right]$. They are shown in Table 6.

However, for KCl the author did not have any reliable thermochemical data, and the calculation was conducted as follows:

15-790 ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
(E) & =0.126 \times(790-15)+5.52 \\
& =15.29 \mathrm{kcal}
\end{aligned}
$$

Figure 13. The results of drop hammer test of burst charges.

790-1420 ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
(E) & =\left\{\frac{0.0126+0.0060}{2}\right\} \times(1420-790) \\
& =5.86 \mathrm{kcal}
\end{aligned}
$$

Greater than $1420{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
E & =\frac{3}{2} R(T-1420-273) \times 2 \times \frac{1}{1000} \\
& =5.958(T-1693) \times 10^{-3} \\
& =5.96 \times 10^{-3} T-10.09 \mathrm{kcal}
\end{aligned}
$$

The sum of the above should be the formula that is applicable for the temperature range up to $1420{ }^{\circ} \mathrm{C}$:

$$
E_{\mathrm{KCl}}=11.06+5.96 \times 10^{-3} \mathrm{~T}
$$

(b) The Internal Energy of Solids

\bar{E} is the internal energy of 1 gram atom and C_{v} is the atomic heat, then

$$
\begin{aligned}
\bar{E} & =9 R \Theta \frac{1}{x^{4}} \int_{0}^{x} \frac{x^{3} d x}{e^{x}-1} \\
C_{v} & =\frac{\partial \bar{E}}{\partial T}=9 R\left[4 x^{-3} \int_{0}^{x} \frac{x^{3} d x}{e^{x}-1}-\frac{x}{e^{x}-1}\right]
\end{aligned}
$$

Here $x=\frac{\Theta}{T}$ and Θ is called the specific temperature.

Table 6. The Internal Energy of Gases with Temperatures $E_{15^{\circ} \mathrm{C}}(\mathbf{T}) / \mathrm{J} \mathrm{kcal} / \mathrm{mole}$.

$\mathrm{T}(\mathrm{K})$	$\mathrm{E}_{\mathrm{H}_{2}}$	$\mathrm{E}_{\mathrm{N}_{2}}$	$\mathrm{E}_{\mathrm{O}_{2}}$	$\mathrm{E}_{\mathrm{S}_{2}}$	E_{CO}	$\mathrm{E}_{\mathrm{H}_{2} \mathrm{O}}$	$\mathrm{E}_{\mathrm{CO}_{2}}$	$\mathrm{E}_{\mathrm{KCl}}$	$\mathrm{E}_{\mathrm{SO}_{3}}$
1000	4.28	4.49	4.78	7.90	4.55	5.72	7.43	-	9.30
1500	6.94	7.54	8.03	12.38	7.64	9.99	13.18	-	17.20
2000	9.82	10.75	11.43	16.93	10.89	14.81	19.24	22.98	25.36
2500	12.86	14.07	14.94	21.56	14.23	19.98	25.45	25.96	33.61
3000	16.01	17.43	18.54	26.26	17.61	25.37	31.73	28.94	41.96
3500	19.24	20.82	22.22	31.03	21.01	30.91	38.07	31.92	50.32
400	22.52	24.24	25.94	35.89	24.44	36.54	44.44	34.90	58.34
4500	25.85	27.66	29.71	40.82	27.87	42.24	50.81	37.88	67.08

Table 7. The Values of $\boldsymbol{C}_{\boldsymbol{v}}$ and \bar{E} / Θ as a Function of $1 / \boldsymbol{x}=T / \Theta$.

$\frac{T}{\Theta}$	C_{v}	$\frac{\bar{E}}{\Theta}$												
0.05	0.15	-	1.05	5.69	4.32	2.05	5.88	10.16	3.05	5.92	16.00	4.05	5.94	21.92
0.10	0.45	0.05	1.10	5.71	4.60	2.10	5.88	10.47	3.10	5.92	16.30	4.10	5.94	22.22
0.15	1.25	0.10	1.15	5.73	4.87	2.15	5.88	10.77	3.15	5.93	16.60	4.15	5.94	22.50
0.20	2.25	0.20	1.20	5.75	5.17	2.20	5.89	11.05	3.20	5.93	16.90	4.20	5.94	22.83
0.25	3.00	0.35	1.25	5.77	5.45	2.25	5.89	11.35	3.25	5.93	17.20	4.25	5.94	23.14
0.30	3.60	0.50	1.30	5.78	5.75	2.30	5.89	11.63	3.30	5.94	17.50	4.30	5.94	23.44
0.35	4.11	0.70	1.35	5.79	6.03	2.35	5.89	11.93	3.35	5.94	17.80	4.35	5.94	23.75
0.40	4.46	0.70	1.40	5.80	6.34	2.40	5.89	12.21	3.40	5.94	18.10	4.40	5.94	24.05
0.45	4.72	1.10	1.45	5.82	6.64	2.45	5.89	12.50	3.45	5.94	18.40	4.45	5.94	24.35
0.50	4.92	1.30	1.50	5.83	6.91	2.50	5.90	12.80	3.50	5.94	18.70	4.50	5.94	24.70
0.55	5.10	1.60	1.55	5.84	7.21	2.55	5.90	13.10	3.55	5.94	19.00	4.55	5.94	24.97
0.60	5.21	1.84	1.60	5.84	7.50	2.60	5.90	13.40	3.60	5.94	19.28	4.60	5.94	25.30
0.65	5.31	2.10	1.65	5.85	7.80	2.65	5.90	13.70	3.65	5.94	19.56	4.65	5.94	25.60
0.70	5.40	2.40	1.70	5.85	8.07	2.70	5.90	13.97	3.70	5.94	19.86	4.70	5.94	25.27
0.75	5.46	2.60	1.75	5.86	8.37	2.75	5.90	14.27	3.75	5.94	20.17	4.75	5.94	26.17
0.80	5.52	2.91	1.80	5.86	8.65	2.80	5.91	14.55	3.80	5.94	20.46	4.80	5.94	26.47
0.85	5.56	3.20	1.85	5.87	8.95	2.85	5.91	14.85	3.85	5.94	20.75	4.85	5.94	26.75
0.90	5.60	3.49	1.90	5.87	9.24	2.90	5.91	15.15	3.90	5.94	21.05	4.90	5.94	27.05
0.95	5.64	3.77	1.95	5.87	9.55	2.95	5.92	15.43	3.95	5.94	21.35	4.95	5.94	27.35
1.00	5.66	4.25	2.00	5.88	9.83	3.00	5.92	15.71	4.00	5.94	21.63	5.00	5.94	27.65

The values calculated from the above formula of C_{v} and \bar{E} / Θ as a function of $1 / x=$ T / Θ are shown in Table 7.

In the following paragraphs, brackets [] indicate the solid state and parentheses () indicate the liquid state for a substance at normal temperature.

In the calculations, four substances have to be included: carbon [C], potassium sulfate [$\left.\mathrm{K}_{2} \mathrm{SO}_{4}\right]$, potassium oxide $\left[\mathrm{K}_{2} \mathrm{O}\right]$, and potassium sulfide $\left[\mathrm{K}_{2} \mathrm{~S}\right]$.

When the atomic heat at high temperature is known, the value at a high temperature is divided by the number of atoms to obtain the value of C_{v}. Then from C_{v} in Table 7 the value of T / Θ is obtained. T is known and Θ is calculated. To obtain the internal energy E, the T / Θ value for each temperatures is calculated for Θ. Then \bar{E} / Θ is obtained from the column of T / Θ. The internal energy E is obtained
by multiplying the value of \bar{E} / Θ by Θ and the number of atoms in one molecule. The value of Θ is shown as follows. ${ }^{[3]}$

	[C(graphite)]	$\left[\mathrm{K}_{2} \mathrm{SO}_{4}\right]$
Measured temp. T (K)	1273	280
Molecular specific heat	4.92	31.2
Number of atoms	1	7
Average atomic heat	4.92	4.45
T/ Θ	0.50	0.40
$\Theta(\mathrm{K})$	2546	720

For $\left[\mathrm{K}_{2} \mathrm{O}\right]$ and $\left[\mathrm{K}_{2} \mathrm{~S}\right]$ the value of Θ could not be obtained, so it was roughly calculated using the following formula. Using C_{v} as $3 n R$, we have:

$$
\begin{aligned}
E_{\left[\mathrm{K}_{2} \mathrm{O}\right]} & =E_{\left[\mathrm{K}_{2} \mathrm{~S}\right]}=3 n R(T-288) \times \frac{1}{1000} \\
& =3 \times 3 \times 1.986 \times(T-288) \times \frac{1}{1000} \\
& =-5.15+17.87 \times 10^{-3} T
\end{aligned}
$$

The values calculated in this way are shown in Table 8.

Table 8. The Internal Energy of Solid Materials $E_{15^{\circ} \mathrm{C}}$ (kcal/mole).

T (K)	$E_{[\mathrm{C}]}$	$E_{\left[\mathrm{K}_{2} \mathrm{SO}_{4}\right]}$	$E_{\left[\mathrm{K}_{2} \mathrm{O}\right]}$	$E_{\left[\mathrm{K}_{2} \mathrm{~S}\right]}$
1000	-	27.12	12.72	12.72
1500	-	47.63	21.66	21.66
2000	2.78	68.24	30.59	30.59
2500	3.88	89.31	39.53	39.53
3000	4.98	109.52	48.46	48.46
3500	6.13	-	-	-
4000	7.26	-	-	-

2. The Characteristic Values of Bursting Charge (H)
(a) The Composition of 1 kg Mixture Consisting of:

Materials	Mixing Ratio (\%)	Quantity in 1 kg of Mixture (g)	Chemical Constituents	Composition (\%)	Quantity in 1 kg Mixture (g)
Potassium chlorate	75	735	KClO_{3}	100	735
Hemp charcoal	25	245	$\begin{gathered} \mathrm{C} \\ \mathrm{H}_{2} \mathrm{O} \\ \text { Ash } \\ \hline \end{gathered}$	$\begin{array}{r} 82 \\ 10 \\ 8 \end{array}$	$\begin{array}{r} 201 \\ 25 \\ 19 \end{array}$
Glutinous rice starch	2	20	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	13	$\begin{array}{r} 17 \\ 3 \\ \hline \end{array}$
	102	1000			1000

(b) Number of Moles of Components in 1 kg Mixture

$$
\begin{aligned}
& \mathrm{KClO}_{3}=735 / 122.58=6.00 \text { mole } \\
& \mathrm{C}=201 / 12.01=16.74 \text { mole } \\
& \mathrm{H}_{2} \mathrm{O}=28 / 18.02=1.55 \text { mole } \\
& \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}=17 / 162.16=0.10 \text { mole }
\end{aligned}
$$

(c) Number of Gram Atoms in 1 kg Mixture

	K	Cl	O	C	H
KClO_{3}	6.00	6.00	18.00	-	-
C	-	-	-	16.74	-
$\mathrm{H}_{2} \mathrm{O}$	-	-			
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$	-	-	-	1.55	-
	6.00	6.00	0.3		

(d) Explosive Reaction

The reaction is assumed to be as follows.

1 kg of mixture $=x \mathrm{CO}_{2}+y \mathrm{H}_{2}+z \mathrm{CO}+$

$$
u\left(\mathrm{H}_{2} \mathrm{O}\right)+\alpha[\mathrm{KCl}]+Q
$$

Here Q denotes combustion heat (explosion heat). On the other hand, introducing the water gas reaction:

$$
\begin{aligned}
& \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}<\longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \\
& \frac{z \cdot u}{x \cdot y}=K(T)
\end{aligned}
$$

Using the following calculated data by statistical mechanics: ${ }^{[6]}$ where

$$
K(T)=\frac{P_{C O} P_{H_{2} O}}{P_{C O_{2}} P_{H_{2}}}
$$

See Table 9.

Table 9. Values of $\boldsymbol{K}(\boldsymbol{T})$ for Various Temperatures.

T	$\mathrm{K}(\mathrm{T})$	T	$\mathrm{K}(\mathrm{T})$	T	$\mathrm{K}(\mathrm{T})$	T	$\mathrm{K}(\mathrm{T})$
1000	0.72	2000	4.46	3000	7.09	4000	8.44
1100	1.04	2100	4.81	3100	7.29	4100	8.55
1200	1.39	2200	5.12	3200	7.46	4200	8.63
1300	1.78	2300	5.42	3300	7.59	4300	8.77
1400	2.16	2400	5.71	3400	7.76	4400	8.84
1500	2.57	2500	5.97	3500	7.87	4500	8.88
1600	2.97	2600	6.23	3600	8.01	4600	8.96
1700	3.36	2700	6.47	3700	8.18	4700	9.03
1800	3.74	2800	6.70	3800	8.27	4800	9.08
1900	4.11	2900	6.59	3900	8.36	4900	9.10

(e) Calculation of Characteristic Values from the Balance of Materials:

$$
\begin{aligned}
\mathrm{C} & =x+z \\
\mathrm{O} & =2 x+z+u \\
\mathrm{H} & =2 y+2 u \\
\mathrm{KCl} & =\alpha
\end{aligned}
$$

From the heat of explosion Q

$$
\begin{aligned}
Q & =x q_{\mathrm{CO}_{2}}+z q_{\mathrm{CO}}+u q_{\left(\mathrm{H}_{2} \mathrm{O}\right)}+\alpha q_{[\mathrm{KCl}]}-q+\Delta q \\
& =x E_{\mathrm{CO}_{2}}+y E_{\mathrm{H}_{2}}+z E_{\mathrm{CO}}+u E_{\left(\mathrm{H}_{2} \mathrm{O}\right)}+\alpha E_{[\mathrm{KCl}]}
\end{aligned}
$$

Here, q denotes the heat of formation; Δq, the value of the correction of q from constant pressure to constant volume and equal to 0.57 $\mathrm{kcal} / \mathrm{mol}$ gas (at the temperature of explosion).

$$
\begin{aligned}
q_{\mathrm{CO}_{2}} & =97.80 \mathrm{kcal} \\
q_{\mathrm{CO}} & =29.70 \mathrm{kcal} \\
q_{\left[\mathrm{H}_{2} \mathrm{O}\right)} & =68.31 \mathrm{kcal} \\
q_{[\mathrm{KCl]}]} & =105.6 \mathrm{kcal} \\
\left.q_{[\mathrm{KClO}}^{3}\right] & =95.9 \mathrm{kcal} \\
q & =6.00 q_{\mathrm{KClO}_{3}}+1.55 q_{\left(\mathrm{H}_{2} \mathrm{O}\right)}+0.10 q_{\left[\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{o}_{5}\right]} \\
& =6.00 \times 95.9+1.55 \times 68.31+0.10 \times 226.8 \\
& =704.0 \mathrm{kcal}
\end{aligned}
$$

From the above formula we have:

$$
\begin{aligned}
& y=\mathrm{C}+\frac{1}{2} \mathrm{H}-\mathrm{O}+x^{\prime}=x-0.66 \\
& z=\mathrm{C}-x=17.34-x \\
& u=\mathrm{O}-\mathrm{C}-x=2.71-x
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\Delta q= & 0.57 \times(x+y+z+u+\alpha) \\
= & 0.57 \times\left(\mathrm{C}+\frac{1}{2} \mathrm{H}+\alpha\right)=0.57 \times 25.39 \\
= & 14.47 \\
Q_{1}= & x q_{\mathrm{CO}_{2}}+z q_{\mathrm{CO}}+u q_{\left(\mathrm{H}_{2} \mathrm{O}\right)}+\alpha q_{[\mathrm{KCl]}}-q+\Delta q \\
= & 97.80 x+29.70(17.34-x)+ \\
& 68.31(2.71-x)+6.00 \times 105.6- \\
& 704.0+14.47 \\
= & 0.21 x+644.19
\end{aligned}
$$

Approximate Value of Explosion Temperature T_{v}

When we disregard the mol of $\mathrm{CO}_{2}(x \doteqdot 0)$, we have $Q_{l}=644 \mathrm{kcal}$.

From the relation of internal energy, disregarding x and y, we have:

$$
Q_{2}=z E_{\mathrm{CO}}+u E_{\mathrm{H}_{2} \mathrm{O}}+\alpha E_{\mathrm{KCl}}
$$

Then we have:

$$
\begin{aligned}
& T=2000 \mathrm{~K} Q_{2}=10.89 \times 17.34+2.71 \times \\
& (14.81+10.54)+6 \times 22.78=395.41
\end{aligned}
$$

```
T=3000 K Q Q = 17.61 \times 17.34+2.71
x
    (25.97+10.54)+6\times28.94=
576.32
T=4000 K Q Q = 24.44 × 17.34+2.71
×
```

$\mathrm{T}(\mathrm{K})$	$x \mathrm{E}_{\mathrm{CO}_{2}}$ $(\mathrm{~T})$	$y \mathrm{E}_{\mathrm{H}_{2}}$ $(\mathrm{~T})$	$z \mathrm{E}_{\mathrm{CO}}$ (T)	$u \mathrm{E}_{\mathrm{H}_{2} \mathrm{O}}$ (T)	$\alpha \mathrm{E}_{\mathrm{KCl}}$ (T)	Q_{2} (kcal)
3000	55.84	17.61	274.36	24.10	173.64	548.55
3500	67.00	21.16	327.34	29.36	191.52	636.38
4000	78.21	24.77	380.78	34.71	209.40	727.87

$(36.54+10.54)+6 \times 34.90=$ 760.78
($E_{\mathrm{H}_{2} \mathrm{O}}$ was added with the latent heat 10.54 $\mathrm{kcal} / \mathrm{mol}$ for vaporization.)

When we read the point $Q_{l}=644 \mathrm{kcal}$ on the T vs Q graph, we have an approximate value:

$$
T_{v}=3360 \mathrm{~K}
$$

More Accurate Calculation of T_{v}.

From Table 9 we have an equilibrium constant $K(T)=7.69$ for $T_{v}=3360 \mathrm{~K}$. Therefore:

$$
\frac{z \cdot u}{x \cdot y}=\frac{(17.34-x)(2.71-x)}{x(x-0.66)}=7.69
$$

From the formula we have, $x=1.76$, therefore:

$$
\begin{aligned}
& y=x-0.66=1.10 \mathrm{~mol} \\
& z=17.34-x=15.58 \mathrm{~mol} \\
& u=2.71-x=0.95 \mathrm{~mol}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
Q_{1} & =0.21 x+644.19=0.21 \times 1.76+644.19 \\
& =645 \mathrm{kcal}
\end{aligned}
$$

From Tables 6 and 8 having the values E and calculating Q_{2}, we have:

Reading the value for T_{v} at $Q_{2}=645 \mathrm{kcal}$ on the $T \mathrm{vs} Q$ graph gives the explosion temperature T_{v}. Thus we have: $T_{v}=3550 \mathrm{~K}$

Repeating the calculation in the same way, using this value of T_{v}, the result did not change.

The specific volume is calculated as:

$$
\begin{aligned}
V_{o} & =(x+y+z+u+\alpha) \times 22.41 \\
& =(1.76+1.10+15.58+0.95) \times 22.41 \\
& =5691
\end{aligned}
$$

The force of explosives is therefore

$$
\begin{aligned}
f_{H} & =0.3782 V_{o} T_{v} \\
& =0.3782 \times 569 \times 3550 \\
& =0.736 \times 10^{6} \mathrm{dm}
\end{aligned}
$$

3. The Characteristic Values of Burst Charge (P)
(a) The Composition

Materials	Mixing Ratio (\%)	Quantity in 1 kg Mixture (g)	Chemical Constituents	Composition (\%)	Quantity in 1 kg Mixture (g)
Potassium perchlorate	70	686	$\begin{gathered} \hline \mathrm{KClO}_{4} \\ \mathrm{H}_{2} \mathrm{O} \\ \text { others } \end{gathered}$	$\begin{array}{r} 99.3 \\ 0.2 \\ 0.5 \end{array}$	$\begin{array}{r} 681 \\ 2 \\ 3 \end{array}$
Hemp charcoal	18	176	$\begin{gathered} \mathrm{C} \\ \mathrm{H}_{2} \mathrm{O} \\ \text { Ash } \end{gathered}$	$\begin{array}{r} 82.0 \\ 10.0 \\ 8.0 \end{array}$	$\begin{array}{r} 144 \\ 18 \\ 14 \end{array}$
Sulfur	12	118	S_{2}	100.0	118
Glutinous rice starch	2	20	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5} \\ \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$	$\begin{aligned} & 87.0 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17 \\ 3 \\ \hline \end{array}$
	102	1000			1000

The remaining C is
$12.59-6.14=6.45 \mathrm{~mole}$

Reaction (3)

Reduction of SO_{2}

$$
\underset{3.23}{\underset{3.45}{\mathrm{SO}_{2}}+\underset{6.45}{2 \mathrm{C}}=\underset{1.62}{2 \mathrm{CO}}+\underset{1}{1 / 2} \mathrm{~S}_{2}}
$$

The remaining SO_{2} is

$$
3.68-3.23=0.45 \mathrm{~mole}
$$

Reaction (4)

$$
\underset{0.45}{\mathrm{CO}_{2}}+\underset{0.45}{\mathrm{SO}_{2}}=\underset{0.45}{\mathrm{CO}}+\underset{0.45}{\mathrm{SO}_{3}}
$$

The remaining CO_{2} is

$$
6.14-0.45=5.69 \text { mole }
$$

From the above calculations, the substances produced should be 0.45 mole $\mathrm{SO}_{3}, 1.62$ mole S_{2}, and 4.91 mole $(1.84+3.07) \mathrm{KCl}$ and CO_{2}, CO. The latter would be in equilibrium with $\mathrm{H}_{2} \mathrm{O}$ and H_{2}, in the gas reaction. Therefore, the reaction equation should be given as

$$
\begin{aligned}
1 \mathrm{~kg} \text { mixture }= & x \mathrm{CO}_{2}+y \mathrm{H}_{2}+z \mathrm{CO}+ \\
& u\left(\mathrm{H}_{2} \mathrm{O}\right)+0.45 \mathrm{SO}_{3}+1.62\left(\mathrm{~S}_{2}\right)+ \\
& 4.91(\mathrm{KCl})+\mathrm{Q} \text { (reaction heat). }
\end{aligned}
$$

From the number of atoms

$$
\begin{aligned}
& \mathrm{C}=x+z=12.59 \\
& \mathrm{O}=2 x+z+u+3 \times 0.45=21.41 \\
& \mathrm{H}=2 y+2 u=3.54
\end{aligned}
$$

From these relations

$$
\begin{aligned}
& y=x-5.70 \\
& z=12.59-x \\
& u=7.47-x
\end{aligned}
$$

(e) Calculation of Characteristic Values

From the heat of formation,

$$
\begin{aligned}
Q_{1}= & x q_{\mathrm{CO}_{2}}+z q_{\mathrm{CO}}+u q_{\left(\mathrm{H}_{2} \mathrm{O}\right)}+0.45 q_{\mathrm{SO}_{3}} \\
& +4.91 q_{\mathrm{KCl}}-q+\Delta q
\end{aligned}
$$

The relation of the equilibrium constant and the temperature comes from Table 9.

First the author obtained $T_{v}=3900 \mathrm{~K}$ and using the corresponding value of $K(T)=8.36$, a precise calculation was carried out.

$$
K(T)=\frac{z \cdot u}{x \cdot y}=\frac{(12.59-x)(7.47-x)}{x(x-5.70)}=8.36
$$

$$
\begin{aligned}
Q_{1} & =5.91 \times 97.80+6.68+24.70+ \\
& 0.66 \times 68.31+0.45 \times 91.9+ \\
& 4.91 \times 105.6-666.72+12.16 \\
& =726.78 \mathrm{kcal}
\end{aligned}
$$

From the internal energy of the component materials, we have:

$$
\begin{gathered}
Q_{2}=x E_{\mathrm{CO}_{2}}(T)+y E_{\mathrm{H}_{2}}(T)+z E_{\mathrm{CO}}(T)+ \\
u E_{\mathrm{H}_{2} \mathrm{O}}(T)+0.45 E_{\mathrm{SO}_{3}}(T)+ \\
1.62 E_{\mathrm{S}_{2}}(T)+4.91 E_{\mathrm{KC1}}(T)
\end{gathered}
$$

From Table 6 the value of Q_{2} was calculated for temperatures from 3000 to 4000 K . The case of $E_{\mathrm{H}_{2} \mathrm{O}}$ was considered from the liquid state, and the value of the latent heat of evaporation of water $10.54 \mathrm{kcal} /$ mole $\left(20^{\circ} \mathrm{C}\right)$ was added:

From this equation we have $x=5.91$, and then we have

$$
\begin{aligned}
& y=5.91-4.80=1.11 \\
& z=12.59-5.91=6.68 \\
& u=6.57-5.91=0.66
\end{aligned}
$$

T (K)	$x \mathrm{E}_{\mathrm{CO}_{2}}$ $(\mathrm{~T})$	$y \mathrm{E}_{\mathrm{H}_{2}}$ $(\mathrm{~T})$	$z \mathrm{E}_{\mathrm{CO}}$				
(T)	$u \mathrm{E}_{\mathrm{H}_{2} \mathrm{O}}$	$0.45 \mathrm{E}_{\mathrm{SO}_{3}}$	$1.62 \mathrm{E}_{\mathrm{S}_{2}}$	$4.91 \mathrm{E}_{\mathrm{KCl}}$			
(T)	(T)	(T)					
3000	187.52	17.77	117.63	23.70	18.88	42.54	142.10
3500	224.99	21.36	140.35	27.36	22.64	50.27	156.73
4000	262.64	25.00	163.26	31.07	26.25	58.14	171.36

Therefore:

$\mathrm{T}(\mathrm{K})$	Q_{2} (kcal)
3000	550.14
3500	643.70
4000	737.72

A graph of T vs Q_{2} was drawn and on the curve of T vs Q_{2} the point corresponding to Q_{2} $=727$ showed the explosive temperature: $T_{v}=$ 3940 K.

The specific volume is calculated as:

$$
\begin{aligned}
\bar{V}_{o} & =(x+y+z+u+0.45+1.62+4.91) \times 22.41 \\
& =\binom{5.91+1.11+6.68+}{0.66+0.45+1.62+4.91} \times 22.41 \\
& =478 \text { liter }
\end{aligned}
$$

The force of explosive is calculated as:

$$
\begin{aligned}
f_{P} & =0.3782 \bar{V}_{o} T_{v}=0.3782 \times 478 \times 3940 \\
& =0.712 \times 10^{6} \mathrm{dm}
\end{aligned}
$$

4. The Characteristic Values of Black Powder (S)
(a) The Composition of 1 kg Mixture:

Materials	Mixing Ratio (\%)	Quantity in 1 kg of Mixture (g)	Chemical Constituents	Composition (\%)	Quantity in 1 kg Mixture (g)
Potassium nitrate	75	735	KNO_{3}	100	735
Hemp charcoal	15	147	C	82.0	120
			$\mathrm{H}_{2} \mathrm{O}$	10.0	15
			Ash	8.0	12
Sulfur	10	98	S_{2}	100.0	98
Glutinous rice starch	2	20	$\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	87.013.0	17
					3
	102	1000			1000

(b) Number of Moles in 1 kg Mixture

KNO_{3}	$=735 / 101.10=7.27$ mole
C	$=120 / 12.01=9.99$ mole
S_{2}	$=98 / 64.12=$
$\mathrm{H}_{2} \mathrm{O}$	$=18 / 18.03$ mole
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$	$=17 / 162.16=1.00$ mole
	$=0.10$ mole

(c) Number of Gram Atoms in 1 kg Mixture

	K	N	O	C	H	S
KNO_{3}	7.27	7.27	21.81	-	-	-
C	-	-	-	9.99	-	-
S_{2}	-	-	-	-	-	3.06
$\mathrm{H}_{2} \mathrm{O}$	-	-	1.00	-	2.00	-
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$	-	-	0.50	0.60	1.00	-
	7.27	7.27	23.31	10.59	3.00	3.06

(d) Explosive Reaction

As a hypothesis, it is proposed that the steps in the explosive reaction are as follows: [The number under the chemical formula shows the moles of the substance.]

Reaction (1)

$$
\underset{6.12}{2 \mathrm{KNO}_{3}}+\underset{1 / 2}{1 / 53} \mathrm{~S}_{2}={ }_{3}=\mathrm{K}_{2} \mathrm{SO}_{4}+\underset{3.06}{ }+\underset{3.06}{\mathrm{~N}_{2}}+\underset{3.06}{\mathrm{O}_{2}}
$$

The remaining KNO_{3} is

$$
7.27-6.12=1.15 \text { mole }
$$

Reaction (2)

$$
\begin{gathered}
2 \mathrm{KNO}_{3} \\
\mathrm{KNO}_{1.15} \\
+0.58 \\
\mathrm{C}= \\
\mathrm{K}_{2} \mathrm{CO}_{3}
\end{gathered}+\underset{0.58}{\mathrm{~N}_{2}}+\underset{0.58}{\mathrm{~N}}+\underset{0.87}{3 / 2 \mathrm{O}_{2}}
$$

The remaining C is
$10.59-0.58=10.01$ mole
The remaining O_{2} is

$$
3.06+0.87=3.93 \text { mole }
$$

Reaction (3)

$$
\begin{gathered}
\mathrm{C}+\underset{\mathrm{O}_{2}}{\mathrm{O}_{2}}=\mathrm{CO}_{2} \\
3.93 .93
\end{gathered}
$$

The remaining C is

$$
10.01-3.93=6.08 \text { mole }
$$

Reaction (4)

$\mathrm{K}_{2} \mathrm{SO}_{4}+7 / 4 \mathrm{C}=1 / 2 \mathrm{~K}_{2} \mathrm{CO}_{3}+1 / 2 \mathrm{~K}_{2} \mathrm{~S}+1 / 4 \mathrm{~S}_{2}+1 / 4 \mathrm{CO}_{2}$
$\begin{array}{llllll}3.06 & 5.36 & 1.53 & 1.53 & 0.77 & 3.83\end{array}$
The remaining C is

$$
6.08-5.36=0.72 \text { mole }
$$

The remaining CO_{2} is

$$
3.93+3.83=7.76 \text { mole }
$$

Reaction (5)

$$
\begin{array}{lr}
\mathrm{CO}_{2}+\underset{\mathrm{C}}{\mathrm{C}}=2 \mathrm{CO} \\
0.72 & 0.72 \\
\hline
\end{array}
$$

Thus the carbon is totally consumed.
The $\mathrm{K}_{2} \mathrm{CO}_{3}$ remaining is

$$
0.58+1.53=2.11 \text { mole }
$$

Reaction (6)

$\mathrm{K}_{2} \mathrm{CO}_{3}$ dissociates at high temperatures:

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{CO}_{3}=\mathrm{K}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& 2.11 \quad 2.11 \quad 2.11
\end{aligned}
$$

From the above reactions, $7.27 \mathrm{~mol} \mathrm{~N}_{2}, 2.11$ $\mathrm{mol} \mathrm{K}_{2} \mathrm{O}, 1.53 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{~S}, 0.77 \mathrm{~mol} \mathrm{~S}_{2}$ and other gases CO_{2} and CO are produced. In this case there may also be the water gas reaction, which produces H_{2} gas. Therefore, in consideration of this reaction, we have:

$$
1 \mathrm{~kg} \text { of mixture }=\begin{array}{r}
x \mathrm{CO}_{2}+y \mathrm{H}_{2}+z \mathrm{CO}+ \\
u \mathrm{H}_{2} \mathrm{O}+3.64 \mathrm{~N}_{2}+ \\
0.77 \mathrm{~S}_{2}+2.11 \mathrm{~K}_{2} \mathrm{O}+ \\
1.53 \mathrm{~K}_{2} \mathrm{~S}+Q
\end{array}
$$

From the number of atoms

$$
\begin{aligned}
& \mathrm{C}=x+z=10.59 \\
& \mathrm{O}=2 x+z+u+2.11=23.31 \\
& \mathrm{H}=2 y+2 u=3.00
\end{aligned}
$$

From these relations

$$
\begin{aligned}
& y=x-9.11 \\
& z=10.59-x \\
& u=10.61-x
\end{aligned}
$$

(e) Calculation of Characteristic Values

The reaction heat is obtained by the relation of the heat of formations:

$$
\begin{aligned}
Q_{1}= & x q_{\mathrm{CO}_{2}}+z q_{\mathrm{CO}}+u q_{\left(\mathrm{H}_{2} \mathrm{O}\right)}+2.11 q_{\left[\mathrm{K}_{2} \mathrm{O}\right]}+ \\
& 1.53 q_{\left[\mathrm{K}_{2} \mathrm{~S}\right]}-q+\Delta q
\end{aligned}
$$

From a rough calculation of explosion temperature, $T_{v}=2000 \mathrm{~K}$ was obtained. Therefore from Table 9 the equilibrium constant $K(T)=$ 4.46 was obtained. Therefore,

$$
K(T)=\frac{z \cdot u}{x \cdot y}=\frac{(10.59-x)(10.61-x)}{x(x-9.11)}=4.46
$$

From this equation we have

$$
x=9.16 .
$$

Further we obtained

$$
\begin{aligned}
& y=9.16-9.11=0.05 \\
& z=10.59-9.16=1.43 \\
& u=10.61-9.16=1.45
\end{aligned}
$$

We also have:

$$
\begin{aligned}
q_{\left[\mathrm{K}_{2} \mathrm{O}\right]}= & 86.8 \mathrm{kcal} \\
q_{\left[\mathrm{K}_{2} \mathrm{~s}\right]}= & 87.3 \mathrm{kcal} \\
q= & 7.27 q_{\left[\mathrm{KNO}_{3}\right]}+1.00 q_{\left(\mathrm{H}_{2} \mathrm{O}\right)}+0.10 q_{\left[\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right]} \\
= & 7.27 \times 119.5+1.00 \times 68.31+ \\
& 0.10 \times 226.8 \\
= & 959.75 \mathrm{kcal} \\
\Delta q= & 0.57 \times(x+y+z+u+3.64+0.77) \\
= & 0.57 \times\binom{ 9.16+0.05+1.43+}{1.45+3.64+0.77} \\
= & 9.41 \mathrm{kcal}
\end{aligned}
$$

Therefore the value of Q_{1} is obtained:

$$
\begin{aligned}
Q_{l}= & 9.16 \times 97.80+1.43 \times 29.70+ \\
& 1.45 \times 68.31+2.11 \times 86.8+ \\
& 1.53 \times 87.3-959.75+9.41 \\
= & 403.75
\end{aligned}
$$

From the internal energy of each product:

$$
\begin{aligned}
Q_{2}= & x E_{\mathrm{CO}_{2}}(T)+y E_{\mathrm{H}_{2}}(T)+z E_{\mathrm{CO}}(T)+ \\
& u E_{\mathrm{H}_{2} \mathrm{O}}(T)+3.64 E_{\mathrm{N}_{2}}(T)+0.77 E_{\mathrm{S}_{2}}(T)+ \\
& 2.11 E_{\left[\mathrm{K}_{2} \mathrm{O}\right]}(T)+1.53 E_{\left[\mathrm{K}_{2} \mathrm{~S}\right]}(T)
\end{aligned}
$$

From of values of Q_{2} are calculated from Tables 6 and 8: [For $E_{\mathrm{H}_{2} \mathrm{O}}$ the latent heat of evaporation ($10.54 \mathrm{kcal} / \mathrm{mol}$ at $20^{\circ} \mathrm{C}$) is added.]

T (K)	$x \mathrm{E}_{\mathrm{CO}_{2}}$ $(\mathrm{~T})$	$y \mathrm{E}_{\mathrm{H}_{2}}$ $(\mathrm{~T})$	$z \mathrm{E}_{\mathrm{CO}}$ (T)	$u \mathrm{E}_{\mathrm{H}_{2} \mathrm{O}}$ (T)	3.64 $\mathrm{E}_{\mathrm{N}_{2}}$ $(\mathrm{~T})$	0.77 $\mathrm{E}_{\mathrm{S}_{2}}$ $(\mathrm{~T})$
1500	120.73	0.35	10.93	29.77	27.45	9.53
2000	176.24	0.49	15.57	36.76	39.13	13.04
2500	233.12	0.64	20.35	44.25	51.21	16.60

$\mathrm{T}(\mathrm{K})$	$2.11 \mathrm{E}_{\left[\mathrm{K}_{2} \mathrm{O}\right]}(\mathrm{T})$	$1.53 \mathrm{E}_{\left[\mathrm{K}_{2} \mathrm{~S}\right]}(\mathrm{T})$	$Q_{2}(\mathrm{kcal})$
1500	45.70	33.14	277.60
2000	64.54	46.80	392.57
2500	83.41	60.48	510.06

A graph of T vs Q_{2} is then drawn and the temperature at $Q_{I}=404 \mathrm{kcal}$ is read. This is the temperature of the explosion $\left(T_{v}\right)$.

$$
T_{v}=2050 \mathrm{~K} .
$$

The specific volume is:

$$
\begin{aligned}
\bar{V}_{o} & =(x+y+z+u+3.64+0.77) \times 22.41 \\
& =\binom{9.16+0.05+1.43+}{1.45+3.64+0.77} \times 22.41 \\
& =370 \text { liter }
\end{aligned}
$$

The force of explosives f_{s} is

$$
\begin{aligned}
f_{s} & =0.3782 \overline{V_{o}} T_{v}=0.3782 \times 370 \times 2050 \\
& =0.287 \times 10^{6} \mathrm{dm}
\end{aligned}
$$

4.3.3 Fuse, Shells and Pasting

For the main fuse, industrial fuse of the second class was used. The shell was made of newspaper, which is the most rational choice because the breaking strength of newspaper is almost negligible. The internal diameter was 105 mm , with a thickness of 2.5 mm . This is called four sun. Another shell called five sun had an internal diameter of 132 mm with a thickness of 3.0 mm .

For the types of paper used in pasting the shells, the following symbols are used:

where \mathbf{W} means Japanese paper and \mathbf{M} means Kraft paper. The subscripts show the number of pasting layers of paper per a diameter length of sun (1.2 inches). For example, with the symbol \mathbf{W}_{16} for 5 inch shell (4 sun shell), the number of pasting layers should be $16 \times 5=$ 80. Figure 14 (A) shows the layers of \mathbf{W}_{8} and (B) shows the layers of \mathbf{W}_{16} for 5 sun (6 inch) shells.

Figure 14. Sections of pasted shell.

In this case sample shells were pasted with two-folded Japanese paper and unfolded Kraft paper. The total sum of the actual paper sheet area divided by the theoretical value S_{0} was 1.08 for Japanese paper and 1.17 for Kraft paper.

The wheat paste used for preparing the twofolded Japanese paper was wheat starch and water in the ration 1:10. The paste used for pasting paper onto the shell was wheat starch and water in the ratio $1: 3$.

The strength of the paper was measured experimentally. The test pieces were made as for tests of metal tensile strength. The strip was 20 mm wide. The sample consisted of no fold, 2 folds, 5 folds and 10 folds of paper and the tensile strengths were measured. The humidity was 77% and the air temperature was $16.5^{\circ} \mathrm{C}$.

Table 10. Breaking Strength of Paper.

Paper Type	Number of Folds	Fiber Direction	Thickness (mm)	Breaking Weight (kg)	Tensile Strength $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$
	1	-	0.08	2.4	150
Japanese paper	1	\mid	0.08	4.3	269
gundo	5	\mid	0.45	19.1	212
M.C. $=8.8 \%$	10	\mid	0.96	53.2	277
	2	+	0.16	7.3	228
	10	+	0.96	47.3	246
Kraft paper	1	-	0.14	3.9	140
(Cement bag)	1	\mid	0.14	8.1	289
M.C. $=10.6 \%$	5	\mid	0.72	37.4	267
	2	+	0.28	12.0	214
	1	-	0.12	0.8	33
Newspaper	1	\mid	0.12	1.7	71
M.C. $=10.9 \%$	2	\mid	0.26	4.2	81
	5	+	0.67	6.8	51
	10	+	1.48	16.4	55

M.C. $=$ moisture content

In Table 10 the symbol (-) indicates that the fibers are arranged at a right angle to the pulling direction, (\mid) indicates that the fibers are parallel to the pulling direction, and (+) indicates that the fibers are folded alternately (parallel and at right angles). The tensile strength of (-) and (|) are quite different from each other. The ratio of $(-) /(\mid)=0.48$ to 0.55 . The mixed strength $(+)$ almost equals the sum of (-) and (|). The tensile strength of Japanese paper is almost the same as that of Kraft. They show $270-290 \mathrm{~kg} / \mathrm{cm}^{2}$ in the direction of the fiber length and $140-150 \mathrm{~kg} / \mathrm{cm}^{2}$ at right angle to the fiber. This is very small in comparison of the tensile strength of steel (3500-5000 $\mathrm{kg} / \mathrm{cm}^{2}$). The tensile strength of newspaper is $25-35 \%$ of Kraft paper and very weak. The Japanese and Kraft papers have almost the same tensile strength. The thickness of the Japanese paper is 0.08 mm and the Kraft is 0.14 mm . Therefore, two sheets of the Japanese paper correspond to one sheet of the Kraft.

4.3.4 Construction of the Sample Shell

As sample shells, we used ring shells to make the analysis easy after the experiment. The construction of the ring shell is shown in Figure 15. The ring shell projects stars in the form of a ring. Cottonseeds were used to fill the space that would normally be occupied by other stars.

A "Line of Stars" was drawn on the shell case to show the position of the ring. Three lugs were attached to the shell case to allow the shell to be suspended in a fixed orientation with respect to the plane of the star ring, as shown in Figure 20.

The cottonseeds were put into a container, water was poured in to a known volume, and the volume of the cottonseeds was obtained. The true volume of 1 kg cottonseeds is 1.211 liter. Therefore:

$$
\Delta=\frac{\varpi}{V-n v_{s}-1.211\left(\varpi^{\prime}+\varpi^{\prime \prime}\right)}
$$

(A) Sectional View (horizontal)

(B) Sectional View (vertical)

Figure 15. The construction of the sample ring shell.
where

V	the internal volume of the shell (I)
ϖ	the quantity of the burst charge without the binding material (kg)
v_{s}	the volume of a star (I)
n	the number of stars
σ^{\prime}	the weight of the cottonseeds for the burst charge (kg)
Ш"	the weight of the cottonseeds for packing material (kg)
Δ	the loading density (kg/l)

The calculated data are shown in Table 11.

4.3.5 Table of Sample Shells

The sample stars manufactured by the above method are arranged in Table 11. The symbols used in the table are as follows. For example, $\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HW}_{8}$ means

D_{4}	4 sun shell (5 inch shell)
B_{8}	8 mm blue star
\mathbf{H}	Burst charge: haisan (potassium chlorate burst charge)
\mathbf{W}_{8}	Japanese paper sunto 8×4 folds pasting.

Shells 1 to 48, which all contained blue stars, were used to determine the effect of the movement on stars of: the size of the shell, the size of the stars, the type of burst charge, the kind of paper pasted, and the number of pasted layers of paper.

Shells 49 to 56 were used to determine the effect of velocity on the star. Specifically, shells 49 to 53 contained three types of stars in the same shell, and were used to compare the velocity of stars without the effect of manufacturing deviations. Shells 57 to 60 were so called manboshi (ordinary chrysanthemum), in which the shells were filled with stars. This was for comparison with the ring shells. Shells 61 and 62 were commercial shells that were compared with the test sample shells.

Table 11. Sample Shells.

$\begin{aligned} & \hline \text { Shell } \\ & \text { Test } \\ & \text { No. } \end{aligned}$	Symbol	Nom. Shell Dia.	Star				Burst Charge			
			Color	Dia. (mm)	No. Stars	Form	Type	Quant. (kg)	Net Wt. (kg)	Cottonseeds B. Chg. (kg)
1	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HW}_{8}$	4 sun	blue	8	35	Ring				
2	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HW}_{16}$	(5 in.)	blue	8	34	Ring				
3	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HM}_{4}$	1	blue	8	35	Ring	H	0.188	0.107	0.081
4	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HM}_{8}$	1	blue	8	35	Ring	H	0.188	0.107	0.081
5	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{SW}_{8}$	1	blue	8	33	Ring	S	0.188	0.106	0.082
6	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{SW}_{16}$	1	blue	8	34	Ring	S	0.188	0.106	0.082
7	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{SM}_{4}$	1	blue	8	34	Ring	S	0.188	0.106	0.082
8	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{SM}_{8}$	1	blue	8	34	Ring	S	0.188	0.106	0.082
9	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PWW}_{8}$	1	blue	8	34	Ring	P	0.188	0.116	0.072
10	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PWW}_{16}$	1	blue	8	34	Ring	P	0.188	0.116	0.072
11	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PM}_{4}$	1	blue	8	35	Ring	P	0.188	0.116	0.072
12	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PM}_{8}$	1	blue	8	34	Ring	P	0.188	0.116	0.072
13	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HW}_{8}$	1	blue	12	24	Ring	H	0.188	0.107	0.081
14	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HW}_{16}$	1	blue	12	24	Ring	H	0.188	0.107	0.081
15	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HM}_{4}$	1	blue	12	24	Ring	H	0.188	0.107	0.081
16	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HM}_{8}$	1	blue	12	24	Ring	H	0.188	0.107	0.081
17	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SW}_{8}$	1	blue	12	24	Ring	S	0.188	0.106	0.082
18	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathbf{S W} \mathrm{~W}_{16}$	1	blue	12	23	Ring	S	0.188	0.106	0.082
19	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SM}_{4}$	1	blue	12	24	Ring	S	0.188	0.106	0.082
20	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathbf{S M}_{8}$	1	blue	12	24	Ring	S	0.188	0.106	0.082
21	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PW}_{8}$	1	blue	12	24	Ring	P	0.188	0.116	0.072
22	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PW}_{16}$	1	blue	12	24	Ring	P	0.188	0.116	0.072
23	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PM}_{4}$	1	blue	12	24	Ring	P	0.188	0.116	0.072
24	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PM}_{8}$	\downarrow	blue	12	24	Ring	P	0.188	0.116	0.072
25	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HW}_{8}$	5 sun	blue	8	45	Ring	H	0.413	0.234	0.179
26	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HW}_{16}$	(6 in.)	blue	8	45	Ring	H	0.413	0.234	0.179
27	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HM}_{4}$	1	blue	8	45	Ring	H	0.413	0.234	0.179
28	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HM}_{8}$	1	blue	8	45	Ring	H	0.413	0.234	0.179
29	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{SW}_{8}$	1	blue	8	44	Ring	S	0.413	0.232	0.181
30	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{SW}_{16}$	1	blue	8	44	Ring	S	0.413	0.232	0.181
31	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{SM}_{4}$	1	blue	8	44	Ring	S	0.413	0.232	0.181
32	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathbf{S M}_{8}$	1	blue	8	44	Ring	S	0.413	0.232	0.181
33	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PW}_{8}$	1	blue	8	44	Ring	P	0.413	0.256	0.157
34	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PWW}_{16}$	1	blue	8	44	Ring	P	0.413	0.256	0.157
35	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PM}_{4}$	1	blue	8	44	Ring	P	0.413	0.256	0.157
36	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PM}_{8}$	1	blue	8	45	Ring	P	0.413	0.256	0.157

Table 11. Sample Shells. (Continued)

Shell Test No.	Symbol	Cottonseed Filling (kg)	Loading Density of Burst Charge (kg/l)	Paper Pasting			
				Type of Paper	No. of folds	$\begin{aligned} & \hline \text { da-di } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	Total Wt. (kg)
				Washi	8	5.7	0.480
2	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HWW}_{16}$	0.118	0.276	Washi	16	10.0	0.565
3	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HM}_{4}$	0.116	0.274	Kraft	4	5.0	0.490
4	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{HM}_{8}$	0.120	0.277	Kraft	8	8.0	0.565
5	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{SW}_{8}$	0.117	0.273	Washi	8	5.3	0.480
6	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathbf{S W}_{16}$	0.137	0.291	Washi	16	11.0	0.600
7	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{SM}_{4}$	0.135	0.289	Kraft	4	5.0	0.500
8	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{SM}_{8}$	0.140	0.295	Kraft	8	10.0	0.575
9	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PWW}_{8}$	0.121	0.293	Washi	8	5.2	0.480
10	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PWW}_{16}$	0.129	0.301	Washi	16	13.0	0.610
11	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PM}_{4}$	0.120	0.292	Kraft	4	5.0	0.472
12	$\mathrm{D}_{4} \mathrm{~B}_{8} \mathrm{PM}_{8}$	0.124	0.296	Kraft	8	10.0	0.572
13	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HW}_{8}$	0.122	0.287	Washi	8	4.1	0.480
14	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HWW}_{16}$	0.120	0.285	Washi	16	8.0	0.520
15	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HM}_{4}$	0.120	0.285	Kraft	4	5.0	0.492
16	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{HM}_{8}$	0.122	0.287	Kraft	8	8.1	0.530
17	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathbf{S W}_{8}$	0.128	0.290	Washi	8	8.0	0.525
18	$\mathrm{D}_{4} \mathrm{~B}_{12}$ SWW $_{16}$	0.119	0.281	Washi	16	10.0	0.585
19	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathbf{S M}_{4}$	0.119	0.282	Kraft	4	9.0	0.505
20	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SM}_{8}$	0.113	0.277	Kraft	8	10.0	0.563
21	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PWW}_{8}$	0.114	0.294	Washi	8	6.7	0.495
22	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PW}_{16}$	0.126	0.306	Washi	16	11.7	0.580
23	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PM}_{4}$	0.114	0.294	Kraft	4	3.2	0.495
24	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{PM}_{8}$	0.122	0.302	Kraft	8	8.0	0.565
25	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HW}_{8}$	0.225	0.299	Washi	8	8.0	0.955
26	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HW}_{16}$	0.221	0.297	Washi	16	12.0	1.100
27	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HM}_{4}$	0.206	0.290	Kraft	4	4.1	0.905
28	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{HM}_{8}$	0.218	0.296	Kraft	8	6.7	0.985
29	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathbf{S W}_{8}$	0.221	0.295	Washi	8	6.7	0.940
30	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathbf{S W}_{16}$	0.194	0.283	Washi	16	15.0	1.165
31	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{SM}_{4}$	0.216	0.293	Kraft	4	7.2	0.955
32	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{SM}_{8}$	0.253	0.310	Kraft	8	11.0	1.080
33	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PWW}_{8}$	0.234	0.320	Washi	8	5.0	0.950
34	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PWW}_{16}$	0.208	0.308	Washi	16	13.0	1.125
35	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PM}_{4}$	0.218	0.313	Kraft	4	6.5	0.940
36	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{PM}_{8}$	0.223	0.315	Kraft	8	10.0	1.095

Table 11. Sample Shells. (Continued)

Shell Test No.	Symbol	Nom. Shell Dia.	Star				Burst Charge			
			Color	Dia. (mm)	No. Stars	Form	Type	Quant. (kg)	Net Wt. (kg)	Cottonseeds B. Chg. (kg)
37	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HW}_{8}$		blue	12	31	Ring	H	0.413	0.234	0.179
38	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HW}_{16}$		blue	12	31	Ring	H	0.413	0.234	0.179
39	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HM}_{4}$		blue	12	31	Ring	H	0.413	0.234	0.179
40	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HM}_{8}$	1	blue	12	31	Ring	H	0.413	0.234	0.179
41	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{SW}_{8}$		blue	12	31	Ring	S	0.413	0.232	0.181
42	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{SW}_{16}$		blue	12	31	Ring	S	0.413	0.232	0.181
43	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{SM}_{4}$		blue	12	31	Ring	S	0.413	0.232	0.181
44	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{SM}_{8}$	\|	blue	12	31	Ring	S	0.413	0.232	0.181
45	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PW}_{8}$		blue	12	31	Ring	P	0.413	0.256	0.157
46	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PW}_{16}$		blue	12	31	Ring	P	0.413	0.256	0.157
47	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PM}_{4}$		blue	12	31	Ring	P	0.413	0.256	0.157
48	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PM}_{8}$	\|	blue	12	31	Ring	P	0.413	0.256	0.157
49	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{G}_{12} \mathrm{~B}_{12} \mathbf{S W}_{8}$		-	12	30	Ring	S	0.413	0.232	0.181
50	$\mathrm{D}_{5} \mathrm{G}_{12} \mathrm{SW}_{8}$		-	12	30	Ring	S	0.413	0.232	0.181
51	$\mathrm{D}_{5} \mathrm{C}_{8} \mathrm{SW}_{8}$		-	8	45	Ring	S	0.413	0.232	0.181
52	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{SW}_{8}$	\|	-	12	31	Ring	S	0.413	0.232	0.181
53	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{G}_{12} \mathrm{~B}_{12} \mathrm{PW}_{8}$		-	12	30	Ring	P	0.413	0.256	0.157
54	$\mathrm{D}_{5} \mathrm{G}_{12} \mathrm{PWW}_{8}$		-	12	30	Ring	P	0.413	0.256	0.157
55	$\mathrm{D}_{5} \mathrm{C}_{8} \mathrm{PW}_{8}$		-	8	44	Ring	P	0.413	0.256	0.157
56	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{PW}_{8}$	\|	-	12	31	Ring	P	0.413	0.256	0.157
57	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{SW}_{8}$		-	8	660	Full	S	0.489	0.275	0.214
58	$\mathrm{D}_{5} \mathrm{G}_{12} \mathrm{SW}_{8}$	\downarrow	-	12	315	Full	S	0.413	0.232	0.181
59	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SW}_{8}$	4 sun	-	12	190	Full	S	0.188	0.106	0.082
60	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SW}_{8}$	(5 in.)	-	12	190	Full	S	0.188	0.106	0.082
61	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SW}_{8}$	5 sun	-	-	?	Full	?	?	?	?
62	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SW}_{8}$	(6 in.)	-	-	?	Full	?	?	?	?

Note: Shells $57-60$ were chrysanthemum shells, and Shells 61 and 62 were commercial shells.

- means that the color of the stars were not clear.

Table 11. Sample Shells. (Continued)

Shell Test No.	Symbol	Cottonseed Filling (kg)	Loading Density of Burst Charge (kg/l)	Paper Pasting			
				Type of Paper	No. of folds	$\begin{aligned} & \text { da-di } \\ & (\mathrm{mm}) \end{aligned}$	Total Wt. (kg)
37	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HW}_{8}$	0.216	0.300	Washi	8	5.5	0.960
38	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HW}_{16}$	0.208	0.296	Washi	16	12.0	1.105
39	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HM}_{4}$	0.223	0.303	Kraft	4	5.5	0.920
40	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{HM}_{8}$	0.212	0.298	Kraft	8	10.0	1.105
41	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathbf{S W}_{8}$	0.233	0.306	Washi	8	6.5	0.970
42	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{SW}_{16}$	0.229	0.304	Washi	16	13.0	1.125
43	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{SM}_{4}$	0.221	0.300	Kraft	4	4.5	0.950
44	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{SM}_{8}$	0.225	0.302	Kraft	8	10.0	1.080
45	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PW}_{8}$	0.225	0.321	Washi	8	8.5	0.985
46	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PW}_{16}$	0.238	0.328	Washi	16	11.5	1.100
47	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PM}_{4}$	0.212	0.315	Kraft	4	6.0	0.960
48	$\mathrm{D}_{5} \mathrm{~B}_{12} \mathrm{PM}_{8}$	0.222	0.320	Kraft	8	10.0	1.075
49	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{G}_{12} \mathrm{~B}_{12} \mathrm{SW}_{8}$	0.223	-	Washi	8	6.5	0.940
50	$\mathrm{D}_{5} \mathrm{G}_{12} \mathbf{S W}_{8}$	0.215	0.297	Washi	8	6.5	0.960
51	$\mathrm{D}_{5} \mathrm{C}_{8} \mathbf{S W}_{8}$	0.230	-	Washi	8	7.3	0.950
52	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{SW}_{8}$	0.188	-	Washi	8	6.0	0.920
53	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{G}_{12} \mathrm{~B}_{12} \mathrm{PW}_{8}$	0.191	-	Washi	8	6.0	0.970
54	$\mathrm{D}_{5} \mathrm{G}_{12} \mathrm{PWW}_{8}$	0.240	0.329	Washi	8	5.5	0.950
55	$\mathrm{D}_{5} \mathrm{C}_{8} \mathrm{PW}_{8}$	0.227	-	Washi	8	6.5	0.950
56	$\mathrm{D}_{5} \mathrm{C}_{12} \mathrm{PW}_{8}$	0.227	-	Washi	8	4.5	0.935
57	$\mathrm{D}_{5} \mathrm{~B}_{8} \mathrm{SW}_{8}$	0.000	-	Washi	8	7.3	1.140
58	$\mathrm{D}_{5} \mathrm{G}_{12} \mathrm{SW}_{8}$	0.000	-	Washi	8	6.0	1.150
59	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathbf{S W}_{8}$	0.000	-	Washi	8	6.5	0.600
60	$\mathrm{D}_{4} \mathrm{~B}_{12} \mathrm{SW}_{8}$	0.000	-	Washi	8	5.0	0.675
61	$\mathrm{D}_{4} \mathrm{X}_{12} \mathbf{S W} \mathbf{W W}_{8}$	0.000	-	Washi	?	?	0.970
62	$\mathrm{D}_{4} \mathrm{X}_{12} \mathbf{S W} \mathrm{SW}_{8}$	0.000	-	Washi	?	?	1.240

Note: color of stars:

Shell 49	Amber to Green to Blue	CGB
Shell 50	Green	G
Shell 51	Amber	C
Shell 52	Amber	C
Shell 53	Amber to Green to Blue	CGB
Shell 54	Green	G
Shell 55	Amber	C
Shell 56	Amber	C
Shell 57	Blue	B
Shell 58	Green	G
Shell 59	Blue	B
Shell 60	Blue	B
Shell 61	Amber to green to red	X
Shell 62	Double petalled	X

Shells 61 and 62 were commercial shells.

Figure 16. Revolving shutter.

4.4 Preparation for the Test

4.4.1 Main Instruments

(1) Camera and Accessories: Camera (focus: $180 \pm 1 \mathrm{~mm}, \mathrm{f}=4.5$) with cabinet-type dry plate.
(2) Revolving Shutter with a Synchronizing Motor: 25 revolutions per second, one wing with shutter angle of 60° (Figure 16).
(3) 16-mm Movie Camera: 128 frames per second, 1 inch focus, $\mathrm{f}=1.8,16-\mathrm{mm}$ Kodak film (100 feet) (Figure 17). The record from this camera was used only for reference.
(4) Illuminators
(5) Surveying Instruments
(6) A Recorder
(7) Distance Poles with Lights
(8) Electric Wire for Revolving Shutter
(9) Side Camera (not special)

Figure 17. Number of frames per second as the time passes.

4.4.2 The Arrangement of the Instruments for Burst Charge Experiments

The installation of the test shell is shown in Figures 19 and 20. The plane of the star ring, which was marked on the outside of the test shell (Figure 15, (B)) was placed vertically so
that it coincided with the vertical plane including the distance poles with lights (Figure 18). The test shell was held firmly with three pieces of wire 1 meter above the ground (Figures 19 and 20).

Figure 18. Arrangement of the instruments for the exploding shells.

Figure 19. Installation of the test shell (1 of 2).

Figure 20 Installation of the test shell (2 of 2).

The distance poles with light were set at intervals of 20 meters from the bursting point toward the west (No. 1-6). Another distance pole (No. 7) was set at 60 m from the exploding point toward the east. Two other distance poles were set on either side of the explosion site to the north and south to mark the horizontal line for the side camera. All of the lights on the poles were installed so that they were level with the test shell, which was hung 1 meter above the ground. The distances between the poles (small electric bulbs) were measured with a tape measure that was verified with a 2 m steel tape measure.

The height of the lens of the revolving shutter camera was a little higher $(0.64 \mathrm{~m})$ than that of bursting shell. However it was regarded as if they were on a same level. A transit was placed at the No. 2 pole and the axis of the lens of the revolving shutter camera was adjusted so that the axis fell at a right angle to the pole line. Thus these installations could catch the image of about $1 / 4$ of the chrysanthemum.

Small electric bulbs were used for lights on the distance poles for the preliminary test, but from then on candle lights were used to save
the electric cells. Only the light on pole No. 2 used both an electric bulb and a candle. However, based on the results, only the candle light was useful.

4.5 Progress of the Experiment

The first day (6 November 1954)

Preliminary tests were conducted. The test shells were burst on the ground, the bursts were photographed, and the film was developed to confirm the results. Time: 9:30 to 10:00 PM, $0^{\circ} \mathrm{C}, 100 \%$ humidity.

The second day (7 November 1954)

Regular tests were conducted. Ignitions with electric devices did not work well and failures occurred with abnormal delay. Then we used black match with good results. Time: 7:15 to 10:15 PM, 80% humidity. The voltage was too low to power the sound recorder.

The third day (8th December 1954)

Time: $6: 30$ to $11: 40 \mathrm{PM}$, Windy $3-5 \mathrm{~m} / \mathrm{s}$, light rain.

Operations

The shells bursts were photographed by the camera with the revolving shutter and by the $16-\mathrm{mm}$ movie camera. For confirmation, the side camera was used to show whether or not the stars filled a vertical plane.

The tests were conducted as follows:

- The second day: Shells $1-28$
- The third day: Shells 29-60, also Shells 2 and 8 , which were left over from the second day.

Photographs for the following tests could not be obtained: Shells 1, 12, 46, and 52.

The photographic results from the 16 mm movie camera were not easy to use because of the deviation of delay times of the ignition of the test shells. However, the following shells were caught almost perfectly by the camera: $22,28,33,34,36,37,40,42,43,44,45,47$, 49,52 , and 53 . These photographs do not have

Figure 21 A. An image taken through the revolving shutter camera from the front.

Figure 21 B. An image from the side.
enough accuracy to determine the velocity of the stars, but they are useful to explain the way the stars move near the explosion and the way the burst charge burned.

The cycles per second of the electric power that was used for the synchronized motor of the camera, from the report of Itsukaichi Power Plant, were as follows:

December	8 PM	11 PM	15 PM
6 th	50	48.5	50
7 th	50	50	50
8th	48	47.5	47

The following photos show examples of the results obtained from the above experiments. Figure 21 A shows an image taken by the camera with the revolving synchronic shutter. The locus of the stars appears as a series of dotted lines. Figure 21 B shows an image from the side camera, Figure 21 C shows images from the movie camera. All of the photos were taken through an open iris.

Figure 21 C. The images taken by the $16-\mathrm{mm}$ movie camera.

