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Chapter 3 — Problems in Designing Chrysanthemum Shells 
 

In manufacturing chrysanthemum shells, 
most of the effort of fireworkers has been di-
rected towards obtaining a certain number of 
‘petals’ and at the same time obtaining a large 
flower radius. In this paper the author evaluates 
the fundamental conditions required to meet 
these objectives. 

The problems are two-fold. The first prob-
lem is the initial velocity attained by the stars 
from the action of the burst charge, that is, the 
problem deals with the explosion (or bursting) 
of the shell. The next problem is the motion of 
the star, which, once initially accelerated, flies 
in air with a trajectory of some sort and travels 
a certain distance. In other words, the problem 
is one of ballistics. 

3.1. Factors that Have an Influence 
on the Initial Velocity of Stars 

It is difficult to judge the influence of the 
various factors without experiments. However, 
from qualitative considerations they are thought 
to be as follows. The burst charge begins to burn 
upon its ignition. When the pressure reaches the 
breaking pressure, the shell explodes. The stars 
begin to move as a result of the action of the 
expanding gas from the explosion. This accel-
eration ceases when the pressure behind the star 
becomes equal to the pressure that comes from 
the air resistance to the motion of star. It is 
known from interior ballistics[2] that the initial 
velocity of the star is affected by the following 
factors: (1) the maximum pressure of breaking 
the shell, (2) the loading density of the burst 
charge, (3) the sectional density of the star (the 
value of the mass of star divided by the star’s 
largest cross-sectional area), (4) the force of the 
explosion of the burst charge and (5) the burn 
rate of burst charge at normal air pressure (i.e., 
vivacity). 

Generally, the combustion reaction of the 
burst charge is most effective in producing a 
high pressure when the breaking strength of the 
shell is large. This imparts a high initial veloc-

ity to the stars. It is necessary to increase the 
strength of the shell for the stars to travel a 
greater distance. 

3.2. Calculation of the Break 
Strength of a Shell 

The breaking resistance of a hollow spherical 
body (such as a firework shell) is introduced as 
follows. 

Symbols are defined as: 

ri = inner radius Pi = internal pressure 

ra = outer radius Pa = external pressure 

r = intermediate radius between ri and ra 

On the shell, the internal pressure Pi and the 
external pressure Pa act on each other at the 
same time. The internal pressure Pi is a force on 
a unit area of the inside surface acting along the 
radius and is uniformly distributed on the sur-
face. Pa is the external force that acts on a unit 
area of surface along the radius of the sphere 
and is uniformly distributed on the outside sur-
face of the shell (Figure 7). 

 
Figure 7.  The pressures that act on the paper 
shell. 
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The following two assumptions are made 
about what happens when the sphere of the shell 
is deformed. 

(1) When the sphere is deformed by the ac-
tion of a force from the outside or inside, the 
molecules on either surface of the sphere re-
main on that same surface. 

(2) Consequently, after the deformation, 
the molecules originally on a surface of radius r 
exist on the deformed surface of radius r + ∆r 

From above assumptions, the smallest vol-
ume dv in the wall of the paper shell is assumed 
to be a small spherical hexahedron as indicated 
by ABCD–EFGH in Figure 8. 

 
Figure 8.  A small spherical hexahedron 
 representing the thickness of the paper shell. 

In this case 

AB = rdϕ = EF 

AE = rdθ = BF 

Therefore, the volume of the hexahedron is 

dv = r2drdθdϕ  

When no pressure acts on the surface, the 
length AO and AD are r and dr. When pressure 
acts on the surface, these values change to 
r + ∆r and dr + d(∆r) [i.e., the both lengths in-

crease: AO increases by ∆r, and AD increases 
by d(∆r)]. Therefore, the deforming ratio of the 
molecules along the radius is d(∆r)/dϕ. When 
no pressure acts, the length of AE is rdθ, and 
when the pressure acts it becomes (r +∆r)dθ 
and it deforms to ∆rdθ. Therefore, the deforma-
tion in the direction of the tangent is ∆rdθ/rdθ = 
∆r/r. 

Three surfaces at the point A are denoted as: 
2ABFE d d

ADHE d d

ABCD d d

x

y

z

r f
r r f

r r f

ϕ θ
θ
ϕ

⎫= =
⎪= = ⎬
⎪= = ⎭

 (1) 

The surfaces of the small volume dv meet at 
right angles to each other before the deforma-
tion. After the deformation the surfaces are at 
right angles to each other as before. Therefore 
the volume is not affected by shearing force, 
but only by internal force at a right angle. The 
internal forces received by the surfaces fx, fy and 
fz are denoted as σx, σy, and σz. 

The small volume dv changes by the action 
of σx, σy, and σz so that the unit lengths are de-
formed, becoming  d(∆r)/dr, dr/r, dr/r. Then the 
internal forces are calculated as: 
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d
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⎪ ⎪⎩ ⎭
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That is, 

d( )(1 ) 2(1 )
(3 ) dx

E r rm m
m m r r

σ ∆ ∆⎧ ⎫= + + −⎨ ⎬− ⎩ ⎭
 (2) 

d( )(1 ) 2
(3 ) dy z

E r rm
m m r r

σ σ ∆ ∆⎧ ⎫= = − +⎨ ⎬− ⎩ ⎭
(2') 

Here E is the elasticity, and m is the value 
for the volume deformation derived from the 
deformation coefficient of the length along the 
direction of the outside pressure. Following the 
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above equations, the interior force has no rela-
tion to ϕ or θ. 

The values of the deformation coefficient, 
d(∆r)dr, ∆r/r, of the volume dv along the three 
axes are then determined. For this purpose, first 
an equilibrium formula of the internal forces on 
the micro cube is constructed. The interior force 
on the three surfaces are σx fx, σy fy, σz fz. The 
area of DCGH, which faces ABFE, is 

2( d ) d dxf r v ϕ θ′ = +  

and the force acting on the right angle is 

(d / d )dx x r r rσ σ′ = + ∆  

Therefore the total interior force acting on: 

2

d( d
d

d( d ( d ) d
d

x x x x

x

xf r f
r

x r r r
r

σσ σ

σσ ϕθ

′ ′ ′
⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞= +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

 (3) 

The surface BCGF is equal to the area of ADHE,  

d dy yf f r r θ′= =  

and the interior right angle force σy is equal to 
the right angle force σy on the surface of ADHE. 
The value of σy from equation 2 is independent 
of θ and a function only of r and the surface of 
radius r, the values of σy should be equal in 
every point. Therefore, it becomes 

' 'y y y yf fσ σ=  

In the same is true for the surface EFGH: 

' 'z z z zf fσ σ=  

Therefore on the surface of the micro cube 
there arise six forces at interior right angle with 
no shearing force. These forces should balance 
each other as seen in Figure 9. 

Figure 9 shows the surface ABCD, but the 
other surfaces are in the same state. For the 
equilibrium of these forces the following rules 
apply: 

 
Figure 9.  Equilibrium of internal forces in the 
thickness of the paper shell. 

(1) When the forces are projected onto the 
three right angle axes, the sum of the compo-
nents of force is zero. 

(2) The sum of moments along the three 
right angle axes is zero. 

The equilibrium equations of internal forces 
are as follows:  

for the direction of X axis: 
1

2' '

1 1
2 2' '

1
2' '

sin( d )

 sin( d ) sin( d )

  sin( d )
0

x x z z y y

y y z z

z z

X f f f

f f

f

σ σ σ ϕ
σ ϕ σ θ

σ θ

Σ = − −

− −

=

 (4) 

for the direction of Y axis: 
1 1

2 2' ' cos( d ) cos( d )

0
y y y yY f fσ ϕ σ ϕΣ = −

=
 (5) 

the direction of the Z-axis should be the same 
as for the Y-axis. 

From equation 5 we have ' 'y y y yf fσ σ= . This 
is the relationship described earlier. In equation 4 
relationships (1) and (3) are substituted, and we 
have 
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d2( )
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In this equation the multiples of dr can be omit-
ted to give: 

d2( ) 0
d

x
x y r

r
σσ σ− + =  (6) 

Equation 2 is differentiated with respect to r 
and multiplied on both sides by r: 

2

2

d(1 )
d

d d2(1 )
d (3 ) d

2(1 )

x

rm r
r

E rr m
r m m r

rm
r

σ

⎧ ⎫∆+ ⋅ ⋅ +⎪ ⎪
⎪ ⎪
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 (7) 

When equations 2, 2' and 7 are incorporated 
into equation 6, we have 

2

2 2

d ( ) 1 d( )2 2 0
d d

r r r
r r r r
∆ ∆ ∆+ ⋅ ⋅ − =  (8) 

Now we put a special solution for equation 8 as 
nr r∆ =  (9) 

and the value of n is obtained: 
2

1 2
2

d( ) d ( )  ,  ( 1)
d d

n nr rnr n n r
r r

− −∆ ∆= = −  (10) 

These are introduced into (8) and we have 
2 2 2( 1) 2 2 0n n nn n r nr r− − −− + − =  

The value of r is not zero, and it must be  

( 1) 2 2  0n n n− + − =  

Therefore 

( 1)( 2) 0n n− + =  

Solving this, we have 

n1 = 1 (11) 

or 

n2 = –2 (12) 

When these are introduced into equation 9, we 
have two linearly independent special solutions: 

1 2
1 2   ,   n nr r r r∆ = ∆ =  

Therefore, two constants A and B are intro-
duced and we have a general solution of equa-
tion 8: 

1 2+n nr Ar Br∆ =  (13) 

Next the formula to obtain the equivalent 
stress is established. First, the constants A and B 
are obtained as follows: 

From equation 2 

d( )(1 ) 2(1 )
dx

r re m m
r r

σ ∆ ∆⎧ ⎫= + + −⎨ ⎬
⎩ ⎭

 (14) 

where 

(3 )
Ee

m m
=

−
 (15) 

Equation 13 is differentiated with respect to r 

1 21 1
1

d( )
d

n nr n Ar Br
r

− −∆ = +  (16) 

Equation 13 is divided by r 

1 21 1n nr Ar Br
r

− −∆ = +  (17) 

Equations 16 and 17 are introduced into equa-
tion 14 

{ }

( )

1 2

1 2

1 2

1 1
1 2

1 1

1 1

(1 ) (1 )

        2(1 ) 2(1 )

    

n n
x

n n

n n

e m n r A m n r B

m r A m r B

d A r B r

σ

α β

− −

− −

− −

= + + +

+ − + −

= +

 (18) 

In equation 18 

1

2

(1 ) 2(1 )
(1 ) 2(1 )

m n m
m n m

α
β

= + + − ⎫
⎬= + + − ⎭

 (19) 

The value of the normal internal force is equal 
to the internal force on the internal surface and 
to the outside pressure Pa on the outside of shell 
with. Both of the pressures on the inside and 
outside of the shell press the thickness of the 
shell along the direction of the radius, and when 
r = ri, σx= –Pi and when r = ra, and σx = –Pa. 
Therefore from equation 18 

( )1 21 1n n
i i iP e A r B rα β− −− = +  (20) 
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( )1 21 1n n
a a aP e A r B rα β− −− = +  (21) 

Equation 20 is multiplied by 1n
i ar r , equation 21 

is multiplied by 2n
a ir r , and then they are sub-

tracted from each other: 

( )1 1 2 1 2 1n n n n n n
a a i i i a i a a iP r r Pr r e B r r r rβ− = −  

From the above: 
1 1

2 1 2 1

1 n n
a a i i i a
n n n n

i a a i

P r r Pr rB
e r r r rβ

−
=

−
 (22) 

With the same calculation, multiplying equa-
tion 20 by rira, and equation 21 by 2n

a ir r and 
subtracting from each other we have: 

( )1 1 1 2 1 2n n n n n n
a a i i i a i a a iP r r Pr r e A r r r rα− = −  

From the above: 
2 2

1 2 1 2

1 n n
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−
=

−
 (23) 

When equations 22 and 23 are introduced into 
equation 17 we have: 
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⎧ ⎫
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⎨ ⎬
⎪ ⎪− −⎪ ⎪⎩ ⎭

 (24) 

Next, when the shell is broken, it is suffi-
cient to consider the deformation resistance 
along the direction of the tangent. This force is 
denoted as Sy. 

Table 1.  Calculated Values of /
iy iS P . 

(a) (b) 
r (mm) /

iy iS P  r (mm) /
iy iS P  

68 3.15 53 2.57 
70 2.96 55 2.37 
72 2.79 57 2.19 
74 2.63 59 2.04 
76 2.49 61 1.90 
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2
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2 1 2 1 1
2 2

1
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y

n
n n

a a i i i a

n n n n n
i a a i n n i
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rS E
r

rP r r Pr r
m m

r r r r rP r r Pr r

β

α

−

∆= ⋅

⎧ ⎫
−⎪ ⎪− ⎪ ⎪= ⎨ ⎬− ⎪ ⎪− −⎪ ⎪⎩ ⎭

 (25) 

The force comes only from the inner pressure. 
Therefore Pa = 0. 

2 1
1 2

2 1 2 1

1 1(3 )
i

n n
n ni i a a

y n n n n
i a a i

m m Pr r rS r r
r r r r α β

− −⎛ ⎞−= ⋅⎜ ⎟− ⎝ ⎠
 (26) 

An example of the calculation is as follows: 

m = 1/3  

(a) ri = 68 mm, ra = 76 mm (corresponds to 
chrysanthemum No. 5), and  

(b) ri = 53 mm, ra = 61 mm (corresponds to 
chrysanthemum No. 4). The values of /

iy iS P  
are calculated, and the results are shown in Ta-
ble 1 and Figure 10. 

 
Figure 10.  Calculated values of /

iy iS P . 
(See Table 1). 

From the results of the calculations in Ta-
ble 1 and Figure 10, we see that the resistance 
to the deformation is the greatest at the interior 
surface. Therefore, when the value 

iyS  is greater 
than the internal resistance force, the shell is 
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broken. Therefore, we can obtain the critical 
internal breaking pressure when we set r = ri, 

iyS = Ji. The critical limit of the internal break-
ing pressure is given by equation 27. 

1 2 1 2

2 1 1 20 (3 )

n n n n
a i i az
n n n n

a i a i

r r r rJP
r r r rm m

α β

−
=

− −
 (27) 

Example:  Jz = 210 kg/cm2 (internal force of 
resistance of Japanese paper), the internal ra-
dius of the shell ri = 25 – 150 mm, the thickness 
of the shell = 2 – 10 mm: the calculation results 

are shown in Table 2 and Figure 11. Then, for 
various internal radii the thickness and the dif-
ference of the thickness for a definite breaking 
force are shown in Table 3. 

According to Table 3 the values of ∆δ are 
constant for a definite interior pressure, even 
when the values of ri change. Consequently, 
when the internal breaking pressure is in-
creased, the strength of the shell should be in-
creased in proportion to the radius of the shell. 
This coincides with the experience of firework-
ers described in Chapter 2. 

Table 2.  The Critical Internal Breaking Pressure P0  (kg/cm2) for Internal Diameter γi and 
Thickness of Shell δ. 

γi   δ   
(mm) 2.0 4.0 6.0 8.0 10.0 

25 46.4 85.7 119.6 146.3 169.3 
50 24.2 46.5 66.9 85.6 102.9 
75 16.4 31.9 46.5 60.4 73.0 

100 12.6 24.3 35.6 46.3 57.0 
125 10.0 19.2 28.6 38.0 46.5 
150 7.9 16.1 23.9 32.0 38.9 

 

 
Figure 11.  Graphs for Table 2. 
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It should be noted that equation 27 applies 
to a theoretically uniform material that forms a 
hollow sphere. However, shells are not uniform, 
because they are made of paper. The calcula-
tions just described must be expected to have 
some unknown problems when they are applied 
to the design of a shell. The value for “m” 
(Poisson’s number) should be determined ex-
perimentally.[2]  None the less, this method 
should be useful as a rough guide to designing a 
chrysanthemum shell.  

3.3. The Effect of the Type of  
 Paper on the Strength of the 
 Shell 

Experience teaches us nothing except the 
principle of per sun, which means the strength 
of the shell is proportional to the folds of paper 
pasted on the shell without consideration to the 
diameter of the shell. That is to say, for exam-
ple, eight folds per sun of Kraft paper on the 5 
sun (6 inch) shell gives the same breaking 
strength as eight folds per sun on the 10-sun 
(12-inch) shell. However, it does not teach us 
about the quality of the paper. 

In Japan we use Japanese paper (Kozo Pa-
per) or Kraft paper. Japanese paper is soft and 
before use, two or three sheets are pasted to-
gether into one sheet. It is easy to work with, 
but its high price prevents using it. Kraft paper 
is less convenient to use than the Japanese pa-
per, but it is less expensive, so at present many 
fireworkers use Kraft. In this paper both types 
of paper are studied. 

 
 
 
 
 
 
 

Table 3.  Internal Diameter γi and Thickness of Shell δ and ∆δ for Critical Pressure γi. 

 P0 (kg/cm2) 
γi 20 30 40 50 

(mm) δ ∆δ δ ∆δ δ ∆δ δ ∆δ 
25 0.8  1.3  1.7  2.2  

  0.9  1.2  1.7  2.1 
50 1.7  2.5  3.4  4.3  

  0.8  1.3  1.7  2.1 
75 2.5  3.8  5.1  6.4  

  0.8  1.2  1.6  2.2 
100 3.3  5.0  6.7  8.6  

  0.8  1.2  1.7  — 
125 4.1  6.2  7.8  —  

  0.9  1.3    — 
150 5.0  7.5  —  —  
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3.4. Mass per Unit Cross Sectional  
 Area of a Spherical Star  
 (Sectional Density) 

The equation for the start of a star’s motion  
is as follows: 

( )
2

2

d
d b f

xm P P
t

σ= −  (28) 

where m is the mass of a star, σ is the area of 
the greatest cross section of the star, d2x/dt2 is 
the acceleration, Pf is the resistant force per unit 
area (pressure) that acts on the front of the star, 
and Pb is the pushing pressure that acts on the 
rear of the star. 

Integrating equation 28 we have: 

( ) 

 0
 d ,  0

t

b t tv P P t v v v
m
σ∆ = − ∆ = − =∫  (29) 

This shows that the change in the velocity of 
the star is inversely proportional to the value of 
the sectional density m/σ, which depends on  
the true density and the size of the star. When 
the true density of the star is constant, the value 
of m/σ increases or decreases in proportion to 
the diameter of the star. The true density is gen-
erally 1.3–1.6 grams per cubic centimeter, and 
it is difficult to obtain larger or smaller values. 
The smaller the sectional density, the larger the 
initial velocity of the star. However, after the 
driving force of the burst charge diminishes, the 
star is greatly decelerated by the air resistance. 
This must be remembered when designing the 
chrysanthemum. 

3.5. The Compositions of the Burst 
Charge 

The compositions that have long been used 
in Japan were mixtures of potassium chlorate 
and hemp charcoal, which were called the hai-
san explosives. (The meaning of the word hai-
san or H3 comes from the mixing ratio of hemp 
charcoal 3 parts to potassium chlorate 10 parts). 
For safety reasons some haisan are mixed with 
potassium nitrate. It must be remembered not to 
mix sulfur or red phosphorus with the haisan. 
In ordinary firework factories, they use Black 
Powder that contains sulfur. In spite of the dan-

ger of mixing sulfur with chlorate, the reasons 
for using haisan are: 

1) it is very quick burning, 

2) it provides a large explosive force, 

3) it requires only a simple manufacturing proc-
ess, when compared to black powder, and 

4) it is the cheapest of all. 

In this study three compositions are studied: 

1) Black Powder, 

2) potassium perchlorate composition, and 

3) potassium chlorate composition (haisan). 

3.6.  The Force of Explosives f 

Following the theory of internal ballistics, 
the energy output E of a propellant is denoted 
as 

1
fwE

γ
=

−
 (30)[2] 

where w is the mass of the explosive charge, f is 
the energy output per unit mass of explosive 
and γ  is the average adiabatic expansion coeffi-
cient of the gas, typically 1.25. 

The value of f in joules/kilogram is given by 
nRT where n is the number of moles of gas pro-
duced by 1 kilogram of explosive, R is the gas 
constant and T is the explosion temperature in 
kelvin. If V0 is the volume of gas produced by 
the explosion of 1 kg of explosive, reduced to 
273.15 K and 1 atmosphere pressure, and if the 
energy is expressed as kilograms weight x 
decimeters, the value of f is given by 0.3782 x 
V0 x T, units decimeters. This is how f will be 
calculated in Chapter 4.    

When burnt gas of the burst charge projects 
a star of mass m with the initial velocity V we 
have: 

21
2 1

fwmV Rσ
γ

= ⋅
−

 

Here, R denotes the effective fraction of the 
charge that acted on the unit cross sectional 
area σ of the star, and it is called the efficiency. 
From the above equation: 
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( ) ( )
1 1 121 2 22

1
21 1

2 2

2
1

V m fw R

mK E R

σ
γ

σ

−

= ⋅
−

⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

 (31) 

The value of fw  is independent of R, and 
the initial velocity is proportional to the square 
root of fw . This should be confirmed by ex-
periments. 

3.7.  The Vivacity A of Burst Charge 

The vivacity of the burst charge has an in-
fluence on the initial velocity of a star with the 
effect of the breaking strength of the shell. Us-
able quantitative data concerning this problem 
have not yet been obtained. The core substance 
of the burst charge should be also selected to 
give good values for the vivacity. This is the 
important goal of this chapter. 

3.8.  Loading Density 

The construction of the burst charge of the 
chrysanthemum is almost uniform among fire-
workers, and the values are 0.28–0.32 kg/dm3. 
The values are obtained from the mass of the 
burst charge divided by the space occupied by 
the stars and the volume of supporting material 
(core). The relation of the breaking strength and 
the loading density is denoted by the equation 
of Noble and Abel:[1] 

0 0
0 11

Z fZP f
η η

∆= =
− −

∆

 (32) 

where ∆ is loading density, Z0 is the burning 
ratio of the burst charge at the breaking of the 
shell, namely the ratio of burnt burst charge to 
initial mass of the burst charge, η the covolume. 
The breaking pressure P0 is thought to be con-
stant, and Z0 decreases with the increase of ∆. 

3.9.  Factors Concerning the Velocity 
of the Stars 

Air decelerates moving stars. According to 
fluid mechanics, air resistance acting on a star 
is given by: 

2 2 1' 'D k v k v
v Re

δ δµρ σ ρ σ
ρ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (33) 

where ρ is the density of the air, µ is the coeffi-
cient of viscosity of air, v is the velocity of the 
star, σ is the cross sectional area of the star,  
is the diameter of the star, and Re is the Rey-
nolds number: 

2 Force of inertia
Force of viscosity

v vRe vρ µρ
µ

= = ÷ ∝

 (34) 

The fluid is air. Therefore, the force of inertia is 
much greater than the force of viscosity. The 
value of the Reynolds number is therefore also 
very large. From equation 33 

1 X
Re

δ
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

From this the value of δ is obtained: 

log
log

X
Re

δ = −  (35) 

As the value of Re approaches infinity, the 
value of δ approaches zero. 

The terms 

1' 'k k
v Re

δ δµ
ρ

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

can be replaced by another constant, k. 

The motion equation for a star flying in a hori-
zontal direction is therefore  

2
2

2

d
d

xm D k v
t

ρ σ= − = −  (36) 

For a star that flies in a vertical direction the 
motion equation is: 

2
2

2

d
d

ym ku mg
t

σ= − −  (37) 

where g is the acceleration due to gravity. The 
above two equations are summarized as fol-
lows: 
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2

2

d
d ( )
d
d ( )

v k v
t p t
u k u g
t p t

⎫= − ⎪′ ⎪
⎬
⎪= − −
⎪′ ⎭

 (38) 

where p' is the sectional density of the star, i.e  
the mass of the star divided by the cross sec-
tional area of the sphere at that time.  

3.10. The Relation of Physical  
Conditions and the Visual 
Beauty 

As described earlier, the uniformity and the 
straightness of the motion of star are most im-
portant for the beauty of the chrysanthemum. 
The trajectory of stars should be as straight as 
possible and the trace of the moving stars 
should be uniform with respect to time and 
space. 

The chrysanthemum must develop the 
beauty of the star light as a quantitative effect. 
Therefore the number of stars contained in a 
shell should be as large as possible. If the di-
ameter of the shell is limited, the stars should 
be as small as possible. However, in this case 
the density of the stars becomes smaller as the 
diameter of the chrysanthemum becomes 
smaller. These factors should be examined later. 

3.11. Calculating the Number of 
Stars in a Round Shell 

The number of round stars that should be 
contained in a spherical shell is calculated as 
follows. The diameter of the shell is denoted as 
D, and the diameter of the stars as d. Now six 
stars are arranged in a flat layer as shown in 
Figure 12. Actually, there are seven stars, the 
centers of which are o, a, b, c, d, e, and f. 

 
Figure 12.  Basic calculation of the number of 
stars arranged in a shell. 

The area of the hexagon abcdef is: 

23 6
4

S d= ×  

This area contains the center star “o” and 1/3 of 
a hexagon ABCDEF. Therefore this area is the 
space that can contain 3 stars (1 + (1/3) × 6 = 3) 
and the area per star is: 

21
3

3
2

S dς = =  

However, the centers of the stars are not on a 
flat surface, but on a sphere, so the above for-
mulas only show the rough calculation. 

The distance from the center of shell to the 
contact point of each star is ½(D–d) cos θ, 
where θ is the angle of a star from the center of 
the shell. The area of the sphere that contains 
the contact points of the stars is: 

2 2

2 2

2
2

2

( ) cos
( ) (1 sin )

( ) 1
( )

D d
D d

dD d
D d

ς π θ
π θ

π

′ = −

= − −

⎧ ⎫
= − −⎨ ⎬−⎩ ⎭

 

Therefore, the number of stars n is denoted 
as 
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{ }2 2 2

2

( ) 1 /( )

3 / 2
2 2
3

D d d D d
n k k

d
D Dk
d d

πς
ς

π

− − −′
= =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

where k is an adjustment factor based on ex-
perience. If k is set to 1.20, we have: 

4.35 2D Dn
d d
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (39) 

This is a formula to calculate the number of 
spherical stars to be contained in a shell. A 
comparison between the calculated and empiri-
cal number of stars are shown in Table 4. 

 
 

Table 4.  The Number of Main Stars along the Inside of a Shell. 

 
Shell Size 

(inch) 

Internal Diam. 
of Shell 
(mm) 

Diameter of  
Star 
(mm) 

Number of  
Stars 

(calculated) 

Number of  
Stars 

(empirical) 
3-1/2 78 9.9 201 200 
5 104 12.7 220 220 
6 132 15.4 245 260 
7 162 17.6 291 280 
8 190 19.3 336 320 
9-1/2 216 20.7 411 330 

12 266 23.1 437 420 
 


