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Computer Modeling of Aerial Shell Ballistics 
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ABSTRACT 

If one has a reasonably accurate computer 
model, it is usually appropriate (cheaper and 
faster) to rely primarily on modeled results, 
supplemented with limited experimental results. 
The case of aerial shell ballistics is no excep-
tion. The mathematical basis for such a ballis-
tics model is derived, and the simplifications 
and assumptions of the model are considered. 
The necessary input parameters are developed 
and some modeling results are presented. Fi-
nally, the use of the model is demonstrated by 
performing a series of calculations, including 
the effect of mortar tilt angle and wind speed. 

Introduction 

A knowledge of fireworks aerial shell ballis-
tics is of more than academic interest. It is the 
basis for answering several important questions 
dealing with fireworks displays. For example: 
(1) What is the appropriate mortar tilt angle to 
use to compensate for a given wind condition? 
(2) Under a given set of conditions, where in 
the sky will properly performing aerial shells 
break? (3) In the event that a shell fails to break 
(is a dud), where will it fall to earth? (4) For 
shells properly breaking at a given altitude, 
where will the shell debris fall to earth? (5) For 
a specific time delay, provided by the time fuse, 
how near the apogee (highest point) will the 
shell be when it bursts? Answering questions 
such as these requires information about aerial 
shell ballistics. The needed information can 
come from guesses based on experience (gener-
ally unreliable), from specific field experiments 
(always expensive), or from ballistics calcula-
tions (generally reliable and always inexpen-
sive). Thus the use of ballistics calculations, 
guided by practical experience and occasionally 

verified empirically, is the best choice for an-
swering questions such as those posed above. 

Following a general discussion of computer 
modeling, this paper presents a derivation of the 
equations used in the authors’ computer model-
ing of aerial shell ballistics. The model is three-
dimensional and includes the effects of mortar 
angle and wind conditions. Also presented is an 
empirical determination of the drag coefficient 
for spherical shells, information about tests of 
the computer model, and some results deter-
mined through its use. 

Computer Modeling Analogy 

Before computers were available, physicists 
solved problems analytically. They solved 
complex equations using high-level mathemat-
ics and obtained exact answers. The difficulty 
was that only the very simplest of problems 
could be solved in this way. For the more inter-
esting and complex problems, simplifying as-
sumptions and approximations had to be made. 
At best this resulted in only approximate an-
swers; and, often, even after simplifying the 
problems they remained unsolvable. 

Now that computers are available, the whole 
approach to problem solving has changed. 
Computers do not make it easier to get analytic 
(exact mathematical) solutions to complex 
problems, but they offer a level of “brute force” 
arithmetic that is simply astounding. Even the 
most inexpensive personal computers can per-
form more arithmetic calculations in a few 
hours than a physicist could in a lifetime. This 
has made it practical to use a much simpler (if 
also less elegant) approach to problem solving; 
that approach is termed modeling. While com-
puter modeling is not an exact solution to a 
problem, it can yield results as close to the ex-
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act solution as necessary, provided enough 
computer time is used. In computer modeling 
there is always a trade-off between the time 
needed to produce an answer and the accuracy 
of that answer. The nature of this trade-off is 
illustrated in the following example. 

Imagine that the problem to be solved is to 
determine the length of the curved line shown 
in Figure 1a, and the only tool available is a 
ruler. The easiest approach is simply to place 
the ruler from the start to the end and read the 
result (see Figure 1b). This is fast, but obvi-
ously seriously underestimates the length of the 
curved line. Suppose instead, that the ruler was 
laid along the line as shown in Figure 1c. In this 
case three measurements are taken and 
summed. This took longer but obviously pro-
duced a much better estimate of the length of 
the curved line. In Figure 1d this approach is 
carried further; here eight measurements are 
taken and summed. Again more time was taken, 
but now a good estimate of the length of the 
curved line has resulted. If it were only neces-
sary to know the length to within a few percent, 
then this would be sufficient. If still greater ac-
curacy is needed, all that would be required is 
to measure even more individual segments. 
Theoretically, no matter how much accuracy is 
needed, greater and greater numbers of line 

segments could be measured until their total 
yielded an answer with the required accuracy; 
the only limitation is the amount of time avail-
able for the measurements. 

The above example illustrates how this same 
problem might be solved on a computer. Prob-
lems are broken into very many small steps and 
solved in a brute force fashion. It is not elegant, 
but it works, and it allows solutions to many 
problems that cannot be solved analytically. 

When complex problems are solved using 
computers by dividing the problem into smaller 
and smaller parts, it is important to know when 
the individual parts are small enough. The 
above example also illustrates how this is done. 
Consider the change upon increasing from us-
ing one line segment to using three line seg-
ments. In this case the estimate of length in-
creased considerably, about 120%. Now con-
sider the change upon increasing from using 
three to eight line segments. This time the esti-
mate of length only increased slightly, ap-
proximately 5%. In computer modeling, when 
calculated results change very little as the prob-
lem is broken into ever smaller parts, the mod-
eled result is generally very close to the exact 
solution. 

Computer Modeling of  
Aerial Shell Ballistics 

Problems in classical mechanics, such as ae-
rial shell ballistics, are well suited to computer 
modeling and excellent results can be attained. 
In general, this type of problem can be stated 
as: given the force laws operating, determine 
the acceleration of the object; from that and 
initial conditions for position and velocity de-
termine its path. In a computer model of aerial 
shell ballistics this is accomplished as a repeat-
ing series of steps: 

1) Start at the muzzle of the mortar with the 
shell having its initial (muzzle) velocity (v). 

2) Choose the small time interval (∆t) to be 
used. 

3) Calculate the force (F) acting on the shell 
at the start of the time interval. 

(A) (B)

(C) (D)

Curve Length - 40.4 Line Length = 16.9
Line Segments - 1

Line Length = 37.4 Line Length = 39.
Line Segments = 8Line Segments = 3

Figure 1.  Determining the length of a curved line 
with a ruler. 
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4) Using Newton’s Second Law of Motion 
(F=ma), calculate the acceleration (a) of 
the shell during that time interval. 

5) Calculate the change in velocity (∆v = a∆t), 
and the average velocity ( v  = v + ½∆v) of 
the shell. 

6) Calculate the change in shell position (∆r = 
v ∆t). 

7) The velocity and position for the shell at 
the end of the time interval are v + ∆v and r 
+ ∆r, and the time is now t + ∆t. 

8) Unless the shell has returned to the ground, 
return to step 3 and continue the calcula-
tions using the new values from step 7. 

Following this procedure the aerial shell is 
stepped along its trajectory until it returns to the 
ground. In the limit as ∆t approaches zero, the 
modeled trajectory is exactly equal to the actual 
trajectory of the shell. Of course, this means 
there would be an infinite number of steps 
along the trajectory, which would require an 
infinite time to run on a computer. As a practi-
cal matter, when ∆t is set to 0.01 second, the 
errors in the modeled results are vanishingly 
small in comparison to errors resulting from 
uncertainties in initial conditions such as muz-
zle velocity, wind speed and direction, mortar 
tilt and direction, air mass density, and the 
shell’s drag coefficient. 

In the above steps, two types of variables are 
used, scalars such as t (shown in normal type-
face), and vectors such as F, a, v, and r (shown 
in bold italic typeface). It is important to under-
stand the difference between the two types of 
variables. Time (t) is a scalar because, while it 
has magnitude, it does not have a direction in 
three-dimensional space. Similarly, speed (v) is 
a scalar quantity because it is used without ref-
erence to direction. On the other hand, velocity 
(v) is a vector because it has both magnitude 
and direction. (The concept of scalars and vec-
tors is not an easy one to grasp. If the reader 
does not have experience with these, it may 
become clearer in the next section of this paper. 
If after completing this paper, the reader wishes 
more information about scalar and vector quan-
tities and how they are used mathematically, a 
college physics text should be consulted.) 

Derivation of the Computer  
Model Equations 

Readers wishing to be spared the tedium of 
the derivation should skip to the next section. 
Before beginning the actual derivation of the 
computer model equations, it is first necessary 
to define some parameters and lay some addi-
tional groundwork. 

A) The model uses Cartesian coordinates, with 
the mortar located at the origin, and the Z–
direction corresponds to the height, see Fig-
ure 2A. 

Coordinate
System τ Mortar Tilt

Angle (  )τ

α Mortar Azimuth
Angle (  )α

ω Wind Direction
Angle (  )ω

(A) (B)

(D)(C)

Z Z

X

XX

Y Y

Y

Figure 2.  Coordinate system with mortar tilt 
angle (τ), mortar azimuth angle (α), and wind 
direction angle (ω) defined. 
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Figure 3.  Apparent wind azimuth angle (β) 
and apparent wind tilt angle (σ) defined. 
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B) The placement of the mortar is defined by 
two angles, tilt (τ) and azimuth (α). 

1) The tilt angle is measured in degrees 
from vertical (the Z–axis) i.e., τ = 0° 
corresponds to vertical mortar placement, 
see Figure 2B. 

2) The azimuth is the mortar angle pro-
jected onto the X–Y plane, measured 
from the X–axis, with clockwise rotation 
corresponding to positive angles, see 
Figure 2C. For example, a mortar tilted 
in the X–direction has α = 0°, and a mor-
tar tilted in the Y–direction has α = 90°. 

C) It is assumed that the wind has no vertical 
component. Thus only one angle is needed 
for its direction. The wind direction (ω) is 
the direction of the origin of the wind, 
measured from the X–axis, with clockwise 
rotation corresponding to positive angles. 
For example, a wind coming from the X–
direction has ω = 0°, and a wind coming 
from the minus Y–direction has ω = 270°. 

D) The model uses metric units internally, but 
all input and output are converted to English 
units for convenience. 

As the aerial shell emerges from the mortar, 
it is acted on by a net force (Fs), which is the 
sum of two forces, gravity (Fg) and the aerody-
namic drag (Fd): 

Fs = Fg + Fd. (1) 

The gravitational force (or weight) is simply 

Fg = m g, (2) 

where m is the mass of the shell in kilograms, 
and g is the acceleration due to gravity (9.8 me-
ters per second2). 

The magnitude of the aerodynamic drag 
force is1,2 

Fd = ½ Cd ρm S va
2, (3) 

where Cd is the drag coefficient for the shell (a 
dimensionless constant which must be deter-
mined empirically), ρm s the mass density of air 
(1.28 kg/m3 at sea level), S is the projected area 
of the shell, and va is the relative speed of the 
air past the shell. 

Converting Equation 3 into vector notation 

Fd = ½ Cd ρm S ua va
2, (4) 

where ua is the air velocity unit vector (which 
has the same direction as va). 

The air flowing past an aerial shell (va), 
arises in part from the wind W, but more sig-
nificantly from the motion of the shell itself. 
The component of air velocity resulting from 
the shell’s motion is equal in magnitude to the 
velocity of the shell vs but opposite in direction. 
Thus, 

va = W – vs.. (5) 

By substitution of Equations 2 and 4 into 
Equation 1, the force acting on the aerial shell 
is 

Fs = m g + ½ Cd ρm S ua va
2. (6) 

Using Newton’s Second Law of Motion (F 
= ma), the resulting acceleration of the shell as 
is 

 as = g + K ua va
2, (7) 

where the constant K has been substituted for 
the quantity (½ Cd ρm S/m). 

From general physics, ∆v = a ∆t, where ∆v 
is the change in velocity produced by constant 
acceleration. Thus the change in shell velocity 
∆vs occurring during the short time interval ∆t 
is 

∆vs = g ∆t + K ua va
2 ∆t. (8) 

For constant acceleration, the average shell 
velocity v s, during the time interval ∆t, is sim-
ply 

v s = vs + ½ ∆vs, (9) 

where vs. is the shell velocity at the start of the 
time interval. 

At the start of the first time interval, shell 
velocity vs is the muzzle velocity. For all subse-
quent time intervals, the starting shell velocity 
is simply the starting shell velocity for the pre-
vious interval plus the change in shell velocity 
∆vs (Equation 8) occurring during that previous 
time interval. 
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Again from general physics, ∆r = v ∆t, 
where ∆r is the change in position. Thus, the 
change in shell position ∆rs occurring during 
the short time interval is 

∆rs = v s ∆t. (10) 

At the start of the first time interval, the 
shell position is at the mortar muzzle, which is 
the origin for the coordinate system. For all 
subsequent time intervals, starting shell position 
is simply the starting shell position for the pre-
vious interval plus the change in position ∆rs 
(Equation 10) occurring in the previous time 
interval. 

The next (and most tedious) step in deriving 
the equations for the model is to resolve Equa-
tions 8 and 10, which contain vector quantities, 
into sets of three equations containing only sca-
lar variables. In the coordinate system defined 
above, any of the vector quantities can be re-
solved into three component vectors, one along 
each axis. For example, the shell’s vector veloc-
ity can be expressed as 

 vs = vsx + vsy + vsz. (11) 

Further, each of the three component vectors 
can be expressed as the product of its scalar 
magnitude and a unit vector u along the axis, 

vs = vsx ux + vsy uy + vsz uz. (12) 

At time zero, when the shell has just exited 
the mortar, its velocity will be the muzzle ve-
locity. Using basic trigonometric relationships, 
the magnitudes of the three initial velocity 
components are: 

 vsz = vm Cos(τ), (13) 

 vsx = vm Sin(τ) Cos(α), and (14) 

 vsy = vm Sin(τ) Sin(α), (15) 

where vm is the scalar muzzle velocity of the 
shell. 

Using basic trigonometric relationships, and 
recalling that it is assumed that there is no Z–
component, the three components for the true 
wind W are: 

Wz = 0, (16) 

Wx = –W Cos(ω), and (17) 

Wy = –W Sin(ω), (18) 

where W is the scalar true wind velocity, and 
the minus sign converts the direction for the 
origin of the wind to the direction toward which 
the wind is blowing. 

Thus using Equation 5 and the above equa-
tions, the magnitudes of the three components 
of the air velocity are: 

vaz = –vsz, (19) 

vax = [–W Cos(ω)] – vsx, and (20) 

vay = [–W Sin(ω)] – vsy. (21) 

To calculate the change in shell velocity us-
ing Equation 8, the magnitude of the air veloc-
ity is also needed, which by combining its com-
ponents, is: 

va = [vax
2 + vay

2 + vaz
2]½. (22) 

To resolve ua into its components along the 
coordinate axes, it is necessary to determine its 
tilt angle σ and azimuth angle ß, see Figure 3. 
Using basic trigonometric relationships: 

σ = Cos–1 (vaz/va), and (23) 

ß = Tan–1 (vay/vax). (24) 

Then, again using basic trigonometric rela-
tionships, the magnitudes of the projections of 
ua are: 

uax = Sin(σ) Cos(ß), (25) 

uay = Sin(σ) Sin(ß), and (26) 

uaz = Cos(σ). (27) 

The set of model equations for velocity 
change during the time interval ∆t, result from 
substitution of the above equations into Equa-
tion 8 and recalling that the only non-zero com-
ponent of g is gz which is in the minus Z–
direction: 

∆vsx = K va
2 Sin(σ) Cos(ß) ∆t, (28) 

∆vsy = K va
2 Sin(σ) Sin(ß) ∆t, and (29) 

∆vsz = –gz ∆t + K va
2 Cos(σ) ∆t. (30) 

The set of model equations for position 
change during the same time interval is just 
Equation 10 resolved into its components: 
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∆rsx = (vsx + ½ ∆vsx) ∆t, (31) 

∆rsy = (vsy + ½ ∆vsy) ∆t, and (32) 

∆rsz = (vsz + ½ ∆vsz) ∆t. (33) 

In Equations 19 through 21 and 31 through 
33, the vs terms are the shell velocity compo-
nents at the start of the time interval. During the 
very first time interval, these values are calcu-
lated using the muzzle velocity and Equations 
13 through 15. Subsequently, they are just the 
velocity components after the previous time 
interval. 

The authors have not included a copy of 
their computer program in this paper because it 
is considered proprietary. However, using 
Equations 28 through 33 and following the pro-
cedural steps for the model listed in the previ-
ous section, it is a relatively simple matter to 
write a computer program to implement the 
model. 

Model Simplifications and  
Assumptions 

As aerial shells are propelled from a 
mortar, they almost always begin to tumble 
(spin), sometimes a little, sometimes a lot. The 
magnitude of the tumbling is impossible to pre-
dict; also unpredictable is the orientation of the 
spinning. The effect of shell spinning is similar 
to a curve-ball pitch in baseball; it will deviate 
from its ballistically predicted path. In addition, 
there are other factors that also contribute to an 
aerial shell “drifting” away from its ballistically 
predicted path. Because the magnitude and ori-
entation of these “drift effects” cannot be 
known in advance, it is not possible to include 
the drift effect into the model without first de-
termining the probability of various drifts oc-
curring and then using so-called Monte Carlo 
techniques in the computer model. (A discus-
sion of Monte Carlo modeling techniques is 
beyond the scope of this article. Suffice it to say 
that: it is a method by which effects that are 
only knowable on a statistical level can be in-

(A) (B)

(D)(C)

MortarShell
Point of Fall

Mortar
Average Drift
Effect

Standard
Deviation

Combined Drift
and Ballistic
EffectsMortar

Ballistic
Point of
Impact

 
Figure 4.  Inclusion of drift effects into ballistic results from a model. 
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corporated into a computer model; a factor of 
about 100 more computer time is required for 
the calculations; and those modeled results are 
not absolute but only statistical in nature. Read-
ers wishing more information on Monte Carlo 
techniques are referred to a university level text 
on numerical analysis.) Fortunately, there is an 
easier and faster way to include drift effects 
into computer modeled results. Many physics 
problems, which are difficult to solve, can be 
made easier by separating the problem into 
parts, finding answers for each part, and then 
combining the parts to get the overall solution. 
This method was attempted by the authors. 

The method by which drift effects are in-
cluded in the ballistic results from the model is 
illustrated in Figure 4. First, (Figure 4A) a se-
ries of dud aerial shells of a given shape and 
size are fired into the air. The shells were ren-
dered duds by having water injected into their 
time fuses. The locations at which the shells fall 
to the ground are recorded. From this informa-
tion, statistical parameters (the average distance 
of the points-of-fall from the mortar and the 
standard deviation about the average) are calcu-
lated (Figure 4B). Next, (Figure 4C) the ballis-
tics model is used to predict the trajectory of a 
non-drifting shell. Finally, (Figure 4D) drift 
effects are added to the ballistic result, predict-
ing the center of probable points-of-fall, how 
far from the center an average shell will fall, 
and the statistical distribution of points-of-fall 
about the average. 

When complex problems can be separated 
into parts, solved separately, and then success-
fully recombined to give accurate results, they 
are said to be linear. While it is unlikely that the 
drifting aerial shell problem is absolutely linear, 
tests such as one described later in this article, 
indicate that the effects of any non-linearity in 
this problem are small enough to be safely ig-
nored. 

Another simplifying assumption (presently 
being made) is that the aerodynamic drag coef-
ficient (Cd) for the aerial shell is constant, inde-
pendent of air velocity. This is certainly not 
true. At the high speed of a typical aerial shell 
as it leaves the mortar, the airflow around the 
shell will be turbulent. Whereas, near the apex 
of its trajectory, when the speed of the shell is 
low, the airflow will be nearly laminar. The 

drag coefficients for these two cases are signifi-
cantly different. In the present model, an aver-
age value for the drag coefficient, or what 
might be called an effective drag coefficient, is 
used. This works well, providing the conditions 
being modeled and those operating when the 
effective drag coefficient was determined are 
similar regarding the magnitude of air velocity. 
Fortunately, such close similarity exists for 
most of the situations of interest in aerial shell 
ballistics modeling. (In the event that cases for 
study required a velocity-dependent drag coef-
ficient that upgrade to the model can easily be 
made.) 

Finally, the model assumes the true wind is 
constant, independent of height above the 
ground and unchanging over the time-of-flight 
of the aerial shell being modeled. Rarely is this 
ever the case, and it would be a simple matter to 
include such effects into the model. However, 
this was not done for two reasons: wind effects 
on an intact aerial shell are relatively small in 
comparison with other effects such as mortar 
angle; and, more importantly, one essentially 
never has even crude information regarding 
wind conditions aloft. 

For this model, the above simplifying 
assumptions will occasionally introduce errors 
into the results. However, uncertainties in other 
parameters, such as muzzle velocity for an in-
dividual shell can introduce significantly larger 
errors. Thus the simplifying assumptions are 
appropriate. 
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Figure 5.  Drag coefficients for spherical  
aerial shells. 
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Determination of Aerial Shell  
Drift Effects 

The determination of drift effects of aerial 
shells is underway. Drift effects for spherical 
shells from three-inch to ten-inch have been 
determined.3 For spherical shells fired from ver-
tical mortars with no wind, the drift effect 
would cause them to fall at an average of 32 
feet away from the mortar for each inch of shell 
size. Thus, on average, a three-inch dud shell 
would fall approximately 100 feet from the 
point-of-fall predicted for a non-drifting shell. 
Finally, the coefficient of variation of the dis-
tribution of the points-of-fall averages 42% for 
fall points below the mean and 97% for fall 
points above the mean.34 (Note: the coefficient of 
variation is standard deviation expressed as a 
percentage of the mean.) As further studies are 
completed, their results will be reported. 

Determination of Aerial Shell  
Drag Coefficients 

The drag coefficient for spherical aerial 
shells was determined empirically using T. 
Shimizu’s published shell performance data in.35 
Using Shimizu’s values for muzzle velocity, 
mass, and projected area, the drag coefficient of 
the model was adjusted until there was agree-
ment with Shimizu’s measurements of shell 
apogee and then flight time to impact. In this 
way 15 drag coefficients were determined. 
These results are plotted in Figure 5. (Note that 
Japanese shell sizes are measured in “suns,” 
with 1 sun = 1.19 inches, and is the reason the 
shell sizes are not integer inches. Also, it should 
be noted that Shimizu occasionally reported 
two sets of results for the same size shell; this 
corresponds to normal and low mass shells.) 
There is a fair amount of scatter in the drag co-
efficient data in Figure 5. This makes it difficult 
to determine whether the drag coefficients for 
spherical shells are a function of shell size. 
When a linear least squares fit was attempted 
with the data, the correlation coefficient was –
0.69, suggesting only a moderate degree of cor-
relation between drag coefficient and shell size. 
(A full discussion of correlation coefficients is 
beyond the scope of this article. Suffice it to say 
that correlation coefficients range from –1 to 0 

to +1 with: –1 indicating a perfect inverse cor-
relation, 0 indicating absolutely no correlation, 
+1 indicating a perfect direct correlation, and 
values between suggesting correlations with 
varying degrees of certainty.) Table 1 lists drag 
coefficients as a function of shell size, as de-
termined using the slope and intercept from the 
least squares fit. 

Table 1.  Spherical Aerial Shell Drag  
Coefficient as a Function of Shell Size. 

Aerial Shell Size (inches) Drag Coefficient 
3 0.397 
4 0.387 
5 0.377 
6 0.368 
8 0.348 

10 0.329 
12 0.310 

       Average of all Data Points = 0.359 
 
As a check on the appropriateness of these 

drag coefficients, they were used in an attempt 
to reproduce Shimizu’s measured times to apo-
gee and heights of apogee. Note that this should 
work well because this is the same data that was 
originally used in determining the drag coeffi-
cients. It was found that the average deviations 
between modeled and measured times to apo-
gee and heights of apogee were 0.1 second and 
39 feet, respectively. As a point of reference, 
when Shimizu’s outer ballistics equations 
(Shimizu, 1985, Section 12.3) were used with 
the same data, the average deviations between 
calculated and measured times to apogee and 
heights of apogee were 0.6 seconds and 48 feet, 
respectively. Thus, at least with the Shimizu 
data, the above drag coefficients work well. 

Because the degree of correlation between 
shell size and drag coefficient was not particu-
larly good, it was decided to investigate 
whether the use of a single average drag coeffi-
cient would result in a significant increase in 
average deviations reported above. When a co-
efficient of 0.36 was used, the average devia-
tions between modeled and measured times to 
apogee and heights of apogee were 0.3 second 
and 34 feet, respectively. This corresponds to a 
moderate worsening of average deviation in 
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times to apogee and a slight improvement in the 
deviation of heights of apogee. While these re-
sults are not quite as good as when shell size 
dependent drag coefficients were used, they are 
not so bad as to reject the use of an average 
drag coefficient independent of spherical shell 
size. The limited results given herein as exam-
ples were produced using 0.36 as the drag coef-
ficient. 

Drag coefficients for cylindrical shells could 
be determined in much the same way as above, 
providing one has access to similar empirical 
data. Unfortunately, the authors are not aware 
of any such data. The situation is further com-
plicated because the average drag coefficient 
for cylindrical shells will be a function of the 
shell’s aspect ratio (ratio of the shell’s length to 
diameter), and shell aspect ratios vary signifi-
cantly between different types of shells. At the 
time of submission of this article, the authors 
have just started work to determine drag coeffi-
cients for cylindrical shells. 

Determination of Optimum Time  
Interval for Model Iterations 

In the computer modeling analogy at the be-
ginning of this article, it was demonstrated that 
as the problem is broken into ever-smaller steps 
(iterations), the modeled result approaches the 
true (analytic) solution to the problem. It was 
also demonstrated that the law of diminishing 
returns plays an important role, and that there 
soon comes a point where the gains resulting 
from ever smaller steps becomes insignificant, 
especially when considering the added time 
necessary to achieve those slight improvements. 
Thus, one way to establish when the problem 
has been broken into small enough steps is to 
observe the results as one uses ever-smaller 
steps. 

In this computer model, the iteration interval 
(step size) is a time interval. To establish the 
optimum time interval the following problem 
(from Shimizu’s data) was considered: 

• Shell Muzzle Velocity = 390 feet/second, 
• Shell Size = 6.85 inches, 
• Shell Weight = 4.65 pounds, 
• Mortar Tilt Angle = 0°, 

• Wind Speed = 0 miles/hour, 
• Drag Coefficient = 0.36, and 
• Elevation Above Sea-Level ≈ 0 feet. 

Table 2 lists the results of a series of mod-
eled results using ever-shorter time intervals. 

Table 2. Modeled Results for Various  
Iteration Time Intervals. 

Time Time to Apogee Time to 
Interval Apogee Height Impact 
(sec-
onds) 

(seconds) (feet) (sec-
onds) 

1.0  5.8  775  13.4 
0.1  6.71  949  15.43 
0.01  6.78  965  15.60 
0.001  6.79  966  15.62 

 
Only an insignificant change resulted from 

reducing the time interval by the factor of ten 
from 0.01 to 0.001 second. Using 0.001 second 
as the time interval, the computer program re-
quired nearly 27 minutes to run, whereas when 
the time interval was 0.01 second it required 
only a little more than 2.5 minutes. (Note that 
these times are for a 286 CPU, IBM-compatible 
computer without a math co-processor.) Obvi-
ously time intervals of 0.01 second are opti-
mum in terms of run time and accuracy. In the 
modeling results reported in the remainder of 
this article, 0.01 second was used as the time 
interval. 

Model Testing 

In those imaginary cases when aerodynamic 
drag is zero, the problem of aerial shell ballis-
tics becomes so simple that it is possible to cal-
culate exact mathematical solutions. Thus the 
first test of the model was to verify that it suc-
cessfully reproduced those analytic results. For 
example, with Cd = 0, for any projectile (inde-
pendent of mass or projected area) fired verti-
cally into the air, from general physics it is 
known that: 

ta = vm / g, (34) 

where ta is the time to apogee; vm is muzzle ve-
locity, and g is the acceleration due to gravity. 
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Za = vm
2 / 2 g,  (35) 

where Za is the height of apogee; 

ti = 2 ta, (36) 

where ti  is the time to impact; and 

vi = –vm,  (37) 

where vi is the velocity on impact. 

When results were computed, there was ex-
act agreement between modeled results and 
Equations 34 through 37. 

The next series of tests confirmed that indi-
vidual model calculations were in exact agree-
ment with hand-generated results. In this man-
ner, each section of the computer program was 
tested and verified to have properly im-
plemented the model equations when non-zero 
drag coefficients were used. 

Tests were also conducted to evaluate the 
“reasonableness” of computer-modeled results. 
For example, checks were made to verify that 
the effects of wind on an aerial shell fired verti-
cally are consistent with the shell’s speed, i.e., 
are greatest just after the shell leaves the mor-
tar, then decrease until the shell reaches its apo-
gee where the effects begin to increase again 
until the shell returns to the ground. The model 
successfully passed this series of tests. 

The final and most definitive test was 
whether the model successfully reproduced re-
sults from field tests with real shells. This test 
also established that shell drift effects can be 
treated separately from ballistic results, i.e., that 
the problem is linear. The first set of results was 
for six-inch spherical shells. In this test, the 
mortar was angled to 24.5°, the azimuth was 
approximately south, and surface winds were ≤ 
2 mph. Eight shells weighing an average of 
39.4 ounces were fired. Their average flight 
time was 12.5 seconds and their average point-
of-fall was 850 feet down range. 

To determine the ballistic trajectory for 
these shells using the computer model, it was 
necessary to input a value for the shell’s muzzle 
velocity. Average muzzle velocity was deter-
mined using the times of flight of the six-inch 
aerial shells fired previously when measuring 

shell drift effects. In this manner, an average 
muzzle velocity of 320 feet per second was es-
tablished. Using this muzzle velocity and the 
measured average shell weight, the computer 
model predicted the average point of impact 
would be 825 feet down range. This level of 
agreement (within 3%) is exceptionally good 
considering the uncertainty in winds aloft and 
actual muzzle velocities. 

When the distribution in the points of fall 
were considered, it was found that the average 
drift effect for shells propelled down range was 
167 feet with a standard deviation of 113 feet. 
This is in comparison with4 192 and 117-feet 
for the mean and standard deviation found in 
the previously reported study of spherical aerial 
shell drift effects. Considering the uncertainty 
in the reported results, the agreement between 
the two drift effect determinations is also ex-
ceptionally good. 

Upon consideration of the above results and 
other similar tests, two conclusions were 
reached. The first is that the aerial shell ballis-
tics problem is very nearly linear, and the other 
is that the model works well in predicting the 
average ballistic path of spherical aerial shells. 

Sample Aerial Shell Ballistics  
Modeling Results 

While it is not the purpose of this article to 
present an extensive series of modeled results, a 
few cases will be presented as examples of how 
the model can be of use. 

One simple application of the model is the 
examination of trajectory parameters for spheri-
cal aerial shells for various mortar tilt angles. 
The modeled results to follow are for the condi-
tions: 

• Muzzle velocity = 320 feet per second, 
• Shell diameter = 5.62 inches, 
• Shell weight = 2.5 pounds, 
• Wind speed = 0 miles per hour, 
• Sea level drag coefficient = 0.36, and 
• Elevation above sea level = 1,000 feet. 
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Figure 6 illustrates the ballistically predicted 
trajectories for shells fired from mortars with 
tilt angles of 5°, 25°, 55°, and 75° from vertical 
and azimuths of 0°. The various curves are plot-
ted in the X–Z plane and thus form scaled rep-
resentatives of the actual trajectories. The 
points shown on each curve are the locations of 
the shells for each second in time elapsed since 
firing. Thus, the distance between points is an 
indication of relative shell velocity. (Note, 
however, that in each case the final time inter-
val just before impact is not a full second.) 

The curve for a 5° mortar tilt can be used to 
make a point about proper timing of bursts of 
aerial shells. Notice that the shell spends about 
four seconds traveling up and down only 70 
feet about its apogee. Throughout this period of 
four seconds, the shell is traveling slowly, and 
the symmetry of its burst any time during this 
period would not be distorted by the shell’s ve-
locity. Some manufacturers feel that the opti-
mum timing of a shell’s burst is just after it 
reaches its apogee, which means the shell is 
already starting to come down. If the shell had 
lost some lift powder or there was a brief hang 
fire in the time fuse, such a shell could be dan-
gerously close to the ground at the time of its 
burst. Obviously a more appropriate time (just 
as effective but safer) for the shell burst would 
be one (or even two) seconds before the shell 
reaches its apogee. 

Figures 7 and 8 graphically present a collec-
tion of ballistic trajectory parameters for typical 
six-inch spherical aerial shells as a function of 
mortar tilt angle. Those parameters are apogee 

height, apogee displacement (the distance the 
shell has traveled down range at the time it 
reaches its apogee), impact point displacement 
(assuming the shell has not already burst), time 
to apogee, and time to impact. Besides demon-
strating a capability of the modeling program, 
these graphs predict the effect of angled mortars 
on the location of normal shell bursts and the 
point where duds could fall. It is perhaps of 
some interest to note that the greatest impact 
point displacement is just over 1,100 feet (not 
considering drift effects) and occurs for a mor-
tar tilt angle of approximately 53°, not at 45° as 
is often assumed. The reason for this is a result 
of drag force being proportional to velocity 
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Figure 7.  Ballistic trajectory parameters for 6" 
spherical aerial shells as a function of mortar 
tilt angle. 

0 200 400 600 800 1000 1200
0

200

400

600

800

Shell Displacment (feet)

Sh
el

l A
lti

tu
de

 (f
ee

t)
25 Degree Tilt

5 Degree Tilt

55 Degree Tilt
75 Degree Tilt

Figure 6.  Ballistically predicted trajectories 
for shells fired from tilted mortars. 
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Figure 8.  Ballistic trajectory parameters for 6" 
spherical aerial shells as a function of mortar 
tilt angle. 
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squared (see Equation 3), and the trajectory not 
being symmetric about the apogee. 

Another aspect of fireworks displays that is 
of considerable interest is the effect of wind on 
the trajectory of aerial shells and the debris cre-
ated at the time of their bursts. Figure 9 graphs 
the displacement of typical six-inch spherical 
shells and their debris downwind as the result 
of varying wind conditions. Three sets of values 
are plotted, shell displacement at the time of 
apogee, shell displacement at the time of impact 
for a dud shell, and, for a normally functioning 
shell, debris displacement at the time the debris 
falls to the ground. In calculating the debris 
trajectory, after the shell reaches its apogee, 
new values for projectile mass, projected area, 
and drag coefficient are used by the computer-
modeling program. Obviously, when a shell 
breaks the debris will have a great range of val-
ues for these three parameters, thus not all de-
bris will fall at the same point. In addition, the 
debris will have a great range of velocities re-
sulting from the exploding shell. Thus, the cal-
culation of landing points for debris should be 
seen as only the very approximate center of the 
distribution. Nonetheless, it is instructive to 
consider the expected fallout point for debris, 
when examining the difficulty in performing a 
display in even moderate winds. In an attempt 
to be conservative with respect to the range of 
debris fallout, it was decided to track one of the 
most dense pieces of debris that would be ex-
pected. In these calculations the piece of debris 
has a mass equal to 3% of the shell, a projected 
area equal to 15% of the shell, and a drag coef-

ficient equal to 3 times that of the shell. Figure 
9 shows that the effects of wind on a shell’s 
displacement at apogee are relatively minor; the 
effect on a dud shell’s impact point is more sig-
nificant; and the effect on a dense piece of de-
bris is very substantial. (Note that while graphs 
in Figure 9 appear as straight lines, they are 
actually curving slightly.) 

Information concerning the amount of mor-
tar tilt needed to correct for the wind displace-
ment effects is shown in Figure 10. The amount 
of mortar tilt indicated in Figure 10 for correc-
tion of shell apogee may be less than common 
experience might suggest. The reason for this is 
that the wind speed sensed by a display opera-
tor is the speed very near the ground. Because 
of obstructions to the wind (trees, buildings, 
people, etc.) the wind speed within five feet of 
the ground will usually be only a fraction of 
that above the obstructions. Perhaps a very 
crude rule of thumb is that the wind at chest 
height is only half of what it is at 50 feet. This 
underestimation of true wind speed makes it 
appear that the wind effect on a shell’s dis-
placement is somewhat greater than it actually is. 

The really important information in Fig-
ure 10 is that except for the trivial case of zero 
wind, there is no one mortar tilt angle that will 
completely correct for both the displacement of 
the a dud shell on impact and the point-of-fallout 
for dense debris. Figure 11 illustrates the ballis-
tic trajectory for the case of a six-inch shell 
fired from a mortar tilted 6.6° into a 40 mph 
wind. This is the case where the mortar has suf-
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Figure 10.  Amount of mortar tilt to correct 
for wind displacement. 
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shell in wind. 
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ficient tilt to compensate for the displacement 
of the shell’s apogee. However, the tilt is sig-
nificantly less than would be required to com-
pensate for the drift in the landing point for a 
dud shell or for the debris from a properly func-
tioning shell. Table 3 gives the required mortar 
tilts needed to compensate for the extreme case 
of a 40 mph wind. 

Table 3. Mortar Tilt Needed to Compensate 
for Effects of 40 mph Wind on a Typical 6" 
Spherical Shell. 

Mortar Tilt Displacement Down Wind (ft) 
Angle Shell at Dud Shell Debris 

(degrees) Apogee at Impact Fallout
6.6 0 195 820 

13.0 –115 0 650 
39.1 –460 –590 0 

 
From Table 3, it should be clear why it is 

not acceptable to fire a display in a 40 mph 
wind, unless spectators are kept at extremely 
great distances or are only upwind from the 
display. That is because, although it is possible 
to correct for any one of the displacements, the 
others can still present serious public safety 
concerns. A display can only be safely per-

formed when the wind conditions are such that 
shells are not propelled toward spectators, and 
both duds and debris will fall safely within the 
secured area for the display. 

Conclusion 

The computer-modeling program presented 
in this article has been verified by both field 
experiment and analytical calculation. The 
modeling program has been used to generate 
some interesting and useful information that 
would have been too expensive to produce ex-
perimentally. The authors intend to continue 
their work and make further results available to 
the fireworks industry as they are completed. 
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